No Arabic abstract
We show the benefits of using Electron-Multiplying CCDs and the shift-and-add technique as a tool to minimise the effects of the atmospheric turbulence such as blending between stars in crowded fields and to avoid saturated stars in the fields observed. We intend to complete, or improve, the census of the variable star population in globular cluster NGC~6715. Our aim is to obtain high-precision time-series photometry of the very crowded central region of this stellar system via the collection of better angular resolution images than has been previously achieved with conventional CCDs on ground-based telescopes. Observations were carried out using the Danish 1.54-m Telescope at the ESO La Silla observatory in Chile. The telescope is equipped with an Electron-Multiplying CCD that allowed to obtain short-exposure-time images (ten images per second) that were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). The high precision photometry was performed via difference image analysis employing the DanDIA pipeline. We attempted automatic detection of variable stars in the field. We statistically analysed the light curves of 1405 stars in the crowded central region of NGC~6715 to automatically identify the variable stars present in this cluster. We found light curves for 17 previously known variable stars near the edges of our reference image (16 RR Lyrae and 1 semi-regular) and we discovered 67 new variables (30 RR Lyrae, 21 long-period irregular, 3 semi-regular, 1 W Virginis, 1 eclipsing binary, and 11 unclassified). Photometric measurements for these stars are available in electronic form through the Strasbourg Astronomical Data Centre.
Two previously unknown variable stars in the crowded central region of the globular cluster NGC 6981 are presented. The observations were made using the Electron Multiplying CCD (EMCCD) camera at the Danish 1.54m Telescope at La Silla, Chile.The two variables were not previously detected by conventional CCD imaging because of their proximity to a bright star. This discovery demonstrates that EMCCDs are a powerful tool for performing high-precision time-series photometry in crowded fields and near bright stars, especially when combined with difference image analysis (DIA).
We present the results of a search for variable stars in the globular cluster NGC 5286, which has recently been suggested to be associated with the Canis Major dwarf spheroidal galaxy. 57 variable stars were detected, only 19 of which had previously been known. Among our detections one finds 52 RR Lyrae (22 RRc and 30 RRab), 4 LPVs, and 1 type II Cepheid of the BL Herculis type. Periods are derived for all of the RR Lyrae as well as the Cepheid, and BV light curves are provided for all the variables. The mean period of the RRab variables is <Pab> = 0.656 days, and the number fraction of RRc stars is N(c)/N(RR) = 0.42, both consistent with an Oosterhoff II (OoII) type -- thus making NGC 5286 one of the most metal-rich ([Fe/H] = -1.67; Harris 1996) OoII globulars known to date. The minimum period of the RRabs, namely Pab,min = 0.513 d, while still consistent with an OoII classification, falls towards the short end of the observed Pab,min distribution for OoII globular clusters. As was recently found in the case of the prototypical OoII globular cluster M15 (NGC 7078), the distribution of stars in the Bailey diagram does not strictly conform to the previously reported locus for OoII stars. We provide Fourier decomposition parameters for all of the RR Lyrae stars detected in our survey, and discuss the physical parameters derived therefrom. The values derived for the RRcs are not consistent with those typically found for OoII clusters, which may be due to the clusters relatively high metallicity -- the latter being confirmed by our Fourier analysis of the ab-type RR Lyrae light curves. We derive for the cluster a revised distance modulus of (m-M)V = 16.04 mag. (ABRIDGED)
We present a new search for variable stars in the Galactic globular cluster M28 (NGC 6626). The search is based on a series of BVI images obtained with the SMARTS Consortiums 1.3m telescope at Cerro Tololo Inter-American Observatory, Chile. The search was carried out using the ISIS v2.2 image subtraction package. We find a total of 25 variable stars in the field of the cluster, 9 being new discoveries. Of the newly found variables, 1 is an ab-type RR Lyrae star, 6 are c-type RR Lyrae, and 2 are long-period/semi-regular variables. V22, previously classified as a type II Cepheid, appears as a bona-fide RRc in our data. In turn, V20, previously classified as an ab-type RR Lyrae, could not be properly phased with any reasonable period. The properties of the ab-type RR Lyrae stars in M28 appear most consistent with an Oosterhoff-intermediate classification, which is unusual for bona-fide Galactic globulars clusters. However, the clusters c-type variables do not clearly support such an Oosterhoff type, and a hybrid Oosterhoff I/II system is accordingly another possibility, thus raising the intriguing possibility of multiple populations being present in M28. Coordinates, periods, and light curves in differential fluxes are provided for all the detected variables.
We have conducted a photometric survey of the globular cluster NGC 6397 in a search for variable stars. We obtained ~11h of time-resolved photometric images with one ne European Southern Observatory-Very Large Telescope using the FOcal Reducer and low dispersion Spectrograph imager distributed over two consecutive nights. We analyzed 8391 light curves of stars brighter than magnitude 23 with the 465 nm-filter, and we identified 412 variable stars, reaching ~ 4.8 +- 0.2 per cent of variability with timescales between 0.004 and 2d, with amplitudes variation greater than +- 0.2 mag.
We present time-series $BVI$ photometry for the Galactic globular cluster NGC 6402 (M14). The data consists of $sim$137 images per filter, obtained using the 0.9m and 1.0m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006-2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, were used to perform crowded-field photometry and search for variable stars. We identified 130 variables, 8 of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive $langle P_{ab}rangle = 0.589$ d. This, together with the position of the RR Lyrae stars of both Bailey types in the period-amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster.