No Arabic abstract
Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT+vdW$^{mathrm{surf}}$. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 AA{} and 0.16 eV, respectively. This confirms the DFT+vdW$^{mathrm{surf}}$ method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.
The adsorption and diffusion of F2 molecules on pristine graphene have been studied using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic barrier is identified, which explains the inertness of graphene in molecular F2 at room temperature, and its reactivity with F2 at higher temperatures. Studies on the diffusion of F2 molecules on graphene surface determine the energy barriers along the optimal diffusion pathways, which help to understand the high stability of fluorographene.
The time-dependent, mean-field Newns-Anderson model for a spin-polarised adsorbate approaching a metallic surface is solved in the wide-band limit. Equations for the time-evolution of the electronic structure of the adsorbate-metal system are derived and the spectrum of electronic excitations is found. The behaviour of the model is demonstrated for a set of physically reasonable parameters.
We use first-principles methods to investigate the adsorption of Cu, Pb, Ag, and Mg onto a H-terminated Si surface. We show that Cu and Pb can adsorb strongly while Ag and Mg are fairly inert. In addition, two types of adsorption states are seen to exist for Pb. We also study the clustering energetics of Cu and Pb on the surface and find that while Cu clusters eagerly, Pb may prefer to form only small clusters of a few atoms. This kind of behavior of impurities is incorporated in kinetic Monte Carlo simulations of wet etching of Si. The simulation results agree with experiments supporting the idea that micromasking by Cu clusters and Pb atoms is the mechanism through which these impurities affect the etching process.
By means of theoretical modeling and experimental synthesis and characterization, we investigate the structural properties of amorphous Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and Zr0.60Si0.33C0.07. The amorphous structures are generated in the theoretical part of our work, by the stochastic quenching (SQ) method, and detailed comparison is made as regards structure and density of the experimentally synthesized films. These films are analyzed experimentally using X-ray absorption spectroscopy, transmission electron microscopy and X-ray diffraction. Our results demonstrate for the first time a remarkable agreement between theory and experiment concerning bond distances and atomic coordination of this complex amorphous metal carbide. The demonstrated power of the SQ method opens up avenues for theoretical predictions of amorphous materials in general.
The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfunction and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na and K, adsorb to hollow site without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene metalization of silicene takes place. Trends directly related to atomic size, adsorption height, workfunction and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline earth metals on silicene are entirely different from their adsorption on graphene. The adsorption of Be, Mg and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal and semiconducting behavior. For all metal adsorbates the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.