Do you want to publish a course? Click here

An Introduction to Programming for Bioscientists: A Python-based Primer

107   0   0.0 ( 0 )
 Added by Cameron Mura
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the languages usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a variable, the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.



rate research

Read More

High-level programming languages such as Python are increasingly used to provide intuitive interfaces to libraries written in lower-level languages and for assembling applications from various components. This migration towards orchestration rather than implementation, coupled with the growing need for parallel computing (e.g., due to big data and the end of Moores law), necessitates rethinking how parallelism is expressed in programs. Here, we present Parsl, a parallel scripting library that augments Python with simple, scalable, and flexible constructs for encoding parallelism. These constructs allow Parsl to construct a dynamic dependency graph of components that it can then execute efficiently on one or many processors. Parsl is designed for scalability, with an extensible set of executors tailored to different use cases, such as low-latency, high-throughput, or extreme-scale execution. We show, via experiments on the Blue Waters supercomputer, that Parsl executors can allow Python scripts to execute components with as little as 5 ms of overhead, scale to more than 250 000 workers across more than 8000 nodes, and process upward of 1200 tasks per second. Other Parsl features simplify the construction and execution of composite programs by supporting elastic provisioning and scaling of infrastructure, fault-tolerant execution, and integrated wide-area data management. We show that these capabilities satisfy the needs of many-task, interactive, online, and machine learning applications in fields such as biology, cosmology, and materials science.
This paper investigates the role of size in biological organisms. More specifically, how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely allometric law. For vascular organisms, the exponent $beta$ of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of an extensive debate and a central issue in comparative physiology. It is presented in this work some empirical data and a detailed discussion about the most successful theories to explain these issues. A historical perspective is also shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model, that consider organism surface area and heat dissipation to derive $beta = 2/3$. Secondly, the West-Brown-Enquist theory, that explains such scaling properties as a consequence of the hierarchical and fractal nutrient distribution network, deriving $beta = 3/4$.
108 - Jake VanderPlas 2014
This paper presents a brief, semi-technical comparison of the essential features of the frequentist and Bayesian approaches to statistical inference, with several illustrative examples implemented in Python. The differences between frequentism and Bayesianism fundamentally stem from differing definitions of probability, a philosophical divide which leads to distinct approaches to the solution of statistical problems as well as contrasting ways of asking and answering questions about unknown parameters. After an example-driven discussion of these differences, we briefly compare several leading Python statistical packages which implement frequentist inference using classical methods and Bayesian inference using Markov Chain Monte Carlo.
Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at http://bionetgen.org.
The biomolecules in and around a living cell -- proteins, nucleic acids, lipids, carbohydrates -- continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also samples (and is sampled by) a rapidly fluctuating local environment comprised of other biopolymers, small molecules, water, ions, etc. that diffuse to within a few nanometers, leading to inter-molecular contacts that stitch together large supramolecular assemblies. Indeed, all biological systems can be viewed as dynamic networks of molecular interactions. As a complement to experimentation, molecular simulation offers a uniquely powerful approach to analyze biomolecular structure, mechanism, and dynamics; this is possible because the molecular contacts that define a complicated biomolecular system are governed by the same physical principles (forces, energetics) that characterize individual small molecules, and these simpler systems are relatively well-understood. With modern algorithms and computing capabilities, simulations are now an indispensable tool for examining biomolecular assemblies in atomic detail, from the conformational motion in an individual protein to the diffusional dynamics and inter-molecular collisions in the early stages of formation of cellular-scale assemblies such as the ribosome. This text introduces the physicochemical foundations of molecular simulations and docking, largely from the perspective of biomolecular interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا