Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs


Abstract in English

Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are determined for levels with principal quantum numbers $n leq 12$ and orbital angular momentum quantum numbers $l leq 3$. Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the $ns$, $np$, and $nd$ states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the $6s$ and $7p$ states for optical wavelengths between 1160 nm and 1800 nm and identify corresponding magic wavelengths for the $6s-7p_{1/2}$, $6s-7p_{3/2}$ transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.

Download