No Arabic abstract
The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is at only 0.14 au and is associated with the Geminid meteor stream. We aim to use all available disk-integrated optical data to derive a reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. We applied the convex inversion method to the new optical data obtained by six instruments and to previous observations. The convex shape model was then used as input for the thermophysical modeling. We also studied the long-term stability of Phaethons orbit and spin axis with a numerical orbital and rotation-state integrator. We present a new convex shape model and rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319$^{circ}$, $-$39$^{circ}$) with a 5$^{circ}$ uncertainty. Moreover, we derive its size ($D$=5.1$pm$0.2 km), thermal inertia ($Gamma$=600$pm$200 J m$^{-2}$ s$^{-1/2}$ K$^{-1}$), geometric visible albedo ($p_{mathrm{V}}$=0.122$pm$0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during the past several thousand years is not connected to a specific area on the surface, which implies non-preferential heating.
(3200) Phaethon is a compelling object as it has an asteroidal appearance and spectrum, produces a weak dust tail during perihelion at just 0.14 AU, and is the parent body of the Geminid Meteor Shower. A better understanding of the physical properties of Phaethon is needed to understand the nature of its current and previous activity, relationship to potential source populations, and to plan for the upcoming flyby of the DESTINY+ spacecraft of Phaethon in the 2020s. We performed rotationally-resolved spectroscopy of Phaethon at visible and near-infrared wavelengths (0.4-2.5 microns) in 2007 and 2017, respectively, to better understand its surface properties. The visible and near-infrared observations both spanned nearly a full rotation or more and were under similar observing geometries, covering the whole surface with the exception of the north pole. The visible wavelengths show blue slopes with only minor slope variations and no absorption features. The NIR data is minimally varying and concave upwards, from very blue to blue-neutral with increasing wavelength. We fit the short-wavelength tail of Phaethons thermal emission and retrieve an average visible albedo of pv = 0.08 +/- 0.01, which is lower than previous measurements but plausible in light of the recent larger radar-measured diameter of Phaethon. We retrieve an average infrared beaming parameter of Phaethon of eta = 1.70 +/- 0.05, which is similar to previous results. We discuss the implications of Phaethons visible and near-infrared spectrum as well as the lower albedo on its origin, source population, and evolutionary history.
The polarimetric observations of asteroid 3200 Phaethon, the target of international observation campaign, did not cover a proper phase angle interval to provide estimating all the attributes of the asteroid polarization curve. Based on present discrete observation data for Phaethon, its full polarimetric curves in BVRI bandpasses were reproduced. The polarimetric properties of the asteroid correspond to a notion on surface structure as thermally altered regolith particles mixed with lager rock fragments like a coarse pebble.
A multi-colour phase-polarization curve of asteroid (3200)~Phaethon has been obtained during the December 2017 apparition by merging measurements taken at the observing station of Calern (France) and at the Rhozen observatory (Bulgaria). All the observations were obtained in the positive polarization branch, the phase angle ranging from 36$^circ$ to 116$^circ$. The measured values of linear polarization are among the highest ever observed for a Solar system body. The covered interval of phase angle was not sufficiently extended to derive a firm determination of the $P_{rm max}$ parameter, but this appears to occur at a phase angle around 130$^circ$ and reaches more than 45% of linear polarization. Phaethon is the parent body of the Geminid meteor shower, and the real physical nature of this object (asteroid or comet) has been a long-debated subject. Our polarimetric measurements seem to support the asteroid hypothesis with a phase-polarization curve similar to the asteroid (2)~Pallas, but further observations at smaller phase angles are needed to draw definitive conclusions.
Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethons surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-micron to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-micron hydrated mineral absorption (within 2-sigma). These observations suggest that Phaethons modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material.
Aims. To derive the thermal inertia of 2008 EV$_5$, the baseline target for the Marco Polo-R mission proposal, and infer information about the size of the particles on its surface. Methods. Values of thermal inertia are obtained by fitting an asteroid thermophysical model to NASAs Wide-field Infrared Survey Explorer (WISE) infrared data. From the constrained thermal inertia and a model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles), grain size is derived. Results. We obtain an effective diameter $D = 370 pm 6,mathrm{m}$, geometric visible albedo $p_V = 0.13 pm 0.05$ (assuming $H=20.0 pm 0.4$), and thermal inertia $Gamma = 450 pm 60$ J/m2/s(1/2)/K at the 1-$sigma$ level of significance for its retrograde spin pole solution. The regolith particles radius is $r = 6.6^{+1.3}_{-1.3}$ mm for low degrees of compaction, and $r = 12.5^{+2.7}_{-2.6}$ mm for the highest packing densities.