On optimal filtering of measured Mueller matrices


Abstract in English

While any two-dimensional mixed state of polarization of light can be represented by a combination of a pure state and a fully random state, any Mueller matrix can be represented by a convex combination of a pure component and three additional components whose randomness is scaled in a proper and objective way. Such characteristic decomposition constitutes the appropriate framework for the characterization of the polarimetric randomness of the system represented by a given Mueller matrix, and provides criteria for the optimal filtering of noise in experimental polarimetry.

Download