We present a comprehensive quasiclassical approach for studying transport properties of superconducting diffusive hybrid structures in the presence of extrinsic spin-orbit coupling. We derive a generalized Usadel equation and boundary conditions that in the normal state reduce to the drift-diffusion theory governing the spin-Hall effect in inversion symmetric materials. These equations predict the non-dissipative spin-galvanic effect, that is the generation of supercurrents by a spin-splitting field, and its inverse -- the creation of magnetic moment by a supercurrent. These effects can be seen as counterparts of the spin-Hall, anomalous Hall and their inverse effects in the superconducting state. Our theory opens numerous possibilities for using superconducting structures in magnetoelectronics.