Do you want to publish a course? Click here

On the Convergent Properties of Word Embedding Methods

61   0   0.0 ( 0 )
 Added by Yingtao Tian
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Do word embeddings converge to learn similar things over different initializations? How repeatable are experiments with word embeddings? Are all word embedding techniques equally reliable? In this paper we propose evaluating methods for learning word representations by their consistency across initializations. We propose a measure to quantify the similarity of the learned word representations under this setting (where they are subject to different random initializations). Our preliminary results illustrate that our metric not only measures a intrinsic property of word embedding methods but also correlates well with other evaluation metrics on downstream tasks. We believe our methods are is useful in characterizing robustness -- an important property to consider when developing new word embedding methods.



rate research

Read More

Word embeddings have become a staple of several natural language processing tasks, yet much remains to be understood about their properties. In this work, we analyze word embeddings in terms of their principal components and arrive at a number of novel and counterintuitive observations. In particular, we characterize the utility of variance explained by the principal components as a proxy for downstream performance. Furthermore, through syntactic probing of the principal embedding space, we show that the syntactic information captured by a principal component does not correlate with the amount of variance it explains. Consequently, we investigate the limitations of variance based embedding post-processing and demonstrate that such post-processing is counter-productive in sentence classification and machine translation tasks. Finally, we offer a few precautionary guidelines on applying variance based embedding post-processing and explain why non-isotropic geometry might be integral to word embedding performance.
Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memory capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.
128 - Lingfei Wu , Ian E.H. Yen , Kun Xu 2018
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called emph{Word Movers Distance} (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the emph{Word Movers Embedding } (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.
A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words Penguin and Fly if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on the binary sentence classification task.
258 - Xin Liu , Qingcai Chen , Yan Liu 2020
Word sense disambiguation tries to learn the appropriate sense of an ambiguous word in a given context. The existing pre-trained language methods and the methods based on multi-embeddings of word did not explore the power of the unsupervised word embedding sufficiently. In this paper, we discuss a capsule network-based approach, taking advantage of capsules potential for recognizing highly overlapping features and dealing with segmentation. We propose a Capsule network-based method to Decompose the unsupervised word Embedding of an ambiguous word into context specific Sense embedding, called CapsDecE2S. In this approach, the unsupervised ambiguous embedding is fed into capsule network to produce its multiple morpheme-like vectors, which are defined as the basic semantic language units of meaning. With attention operations, CapsDecE2S integrates the word context to reconstruct the multiple morpheme-like vectors into the context-specific sense embedding. To train CapsDecE2S, we propose a sense matching training method. In this method, we convert the sense learning into a binary classification that explicitly learns the relation between senses by the label of matching and non-matching. The CapsDecE2S was experimentally evaluated on two sense learning tasks, i.e., word in context and word sense disambiguation. Results on two public corpora Word-in-Context and English all-words Word Sense Disambiguation show that, the CapsDecE2S model achieves the new state-of-the-art for the word in context and word sense disambiguation tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا