Do you want to publish a course? Click here

Exponential Machines

100   0   0.0 ( 0 )
 Added by Alexander Novikov
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Modeling interactions between features improves the performance of machine learning solutions in many domains (e.g. recommender systems or sentiment analysis). In this paper, we introduce Exponential Machines (ExM), a predictor that models all interactions of every order. The key idea is to represent an exponentially large tensor of parameters in a factorized format called Tensor Train (TT). The Tensor Train format regularizes the model and lets you control the number of underlying parameters. To train the model, we develop a stochastic Riemannian optimization procedure, which allows us to fit tensors with 2^160 entries. We show that the model achieves state-of-the-art performance on synthetic data with high-order interactions and that it works on par with high-order factorization machines on a recommender system dataset MovieLens 100K.

rate research

Read More

Restricted Boltzmann Machines (RBMs) are a class of generative neural network that are typically trained to maximize a log-likelihood objective function. We argue that likelihood-based training strategies may fail because the objective does not sufficiently penalize models that place a high probability in regions where the training data distribution has low probability. To overcome this problem, we introduce Boltzmann Encoded Adversarial Machines (BEAMs). A BEAM is an RBM trained against an adversary that uses the hidden layer activations of the RBM to discriminate between the training data and the probability distribution generated by the model. We present experiments demonstrating that BEAMs outperform RBMs and GANs on multiple benchmarks.
We study a general online linear optimization problem(OLO). At each round, a subset of objects from a fixed universe of $n$ objects is chosen, and a linear cost associated with the chosen subset is incurred. To measure the performance of our algorithms, we use the notion of regret which is the difference between the total cost incurred over all iterations and the cost of the best fixed subset in hindsight. We consider Full Information and Bandit feedback for this problem. This problem is equivalent to OLO on the ${0,1}^n$ hypercube. The Exp2 algorithm and its bandit variant are commonly used strategies for this problem. It was previously unknown if it is possible to run Exp2 on the hypercube in polynomial time. In this paper, we present a polynomial time algorithm called PolyExp for OLO on the hypercube. We show that our algorithm is equivalent Exp2 on ${0,1}^n$, Online Mirror Descent(OMD), Follow The Regularized Leader(FTRL) and Follow The Perturbed Leader(FTPL) algorithms. We show PolyExp achieves expected regret bound that is a factor of $sqrt{n}$ better than Exp2 in the full information setting under $L_infty$ adversarial losses. Because of the equivalence of these algorithms, this implies an improvement on Exp2s regret bound in full information. We also show matching regret lower bounds. Finally, we show how to use PolyExp on the ${-1,+1}^n$ hypercube, solving an open problem in Bubeck et al (COLT 2012).
Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application domains and receiver operating characteristic (ROC) curves provide a visual representation of this trade-off. Nonparametric estimators for the ROC curve, such as a weighted support vector machine (SVM), are desirable because they are robust to model misspecification. While weighted SVMs have great potential for estimating ROC curves, their theoretical properties were heretofore underdeveloped. We propose a method for constructing confidence bands for the SVM ROC curve and provide the theoretical justification for the SVM ROC curve by showing that the risk function of the estimated decision rule is uniformly consistent across the weight parameter. We demonstrate the proposed confidence band method and the superior sensitivity and specificity of the weighted SVM compared to commonly used methods in diagnostic medicine using simulation studies. We present two illustrative examples: diagnosis of hepatitis C and a predictive model for treatment response in breast cancer.
A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting Exponential Weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.
We study the average $mbox{CV}_{loo}$ stability of kernel ridge-less regression and derive corresponding risk bounds. We show that the interpolating solution with minimum norm minimizes a bound on $mbox{CV}_{loo}$ stability, which in turn is controlled by the condition number of the empirical kernel matrix. The latter can be characterized in the asymptotic regime where both the dimension and cardinality of the data go to infinity. Under the assumption of random kernel matrices, the corresponding test error should be expected to follow a double descent curve.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا