Theory of charge density wave non-contact friction


Abstract in English

A mechanism is proposed to describe the occurrence of distance-dependent dissipation peaks in the dynamics of an atomic force microscope tip oscillating over a surface characterized by a charge density wave state. The dissipation has its origin in the hysteretic behavior of the tip oscillations occurring at positions compatible with a localized phase slip of the charge density wave. This model is supported through static and dynamic numerical simulations of the tip surface interaction and is in good qualitative agreement with recently performed experiments on a NbSe$_2$ sample.

Download