No Arabic abstract
We present our optical follow-up observations to search for an electromagnetic counterpart of the first gravitational wave source GW150914 in the framework of the Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM), which is an observing group utilizing optical and radio telescopes in Japan, as well as those in New Zealand, China, South Africa, Chile, and Hawaii. We carried out a wide-field imaging survey with Kiso Wide Field Camera (KWFC) on the 1.05-m Kiso Schmidt telescope in Japan and a galaxy-targeted survey with Tripole5 on the B&C 61-cm telescope in New Zealand. Approximately 24 deg2 regions in total were surveyed in i-band with KWFC and 18 nearby galaxies were observed with Tripole5 in g-, r-, and i-bands 4-12 days after the gravitational wave detection. Median 5-sigma depths are i~18.9 mag for the KWFC data and g~18.9 mag, r~18.7 mag, and i~18.3 mag for the Tripole5 data. Probability for a counterpart to be in the observed area is 1.2% in the initial skymap and 0.1% in the final skymap. We do not find any transient source associated to an external galaxy with spatial offset from its center, which is consistent with the local supernova rate. We summarize future prospects and ongoing efforts to pin down electromagnetic counterparts of binary black hole mergers as well as neutron star mergers.
We report the results of optical--infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 days after the GW event and covered 778 deg$^2$ centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from 12 days after the event and covered an area of 63.5 deg$^2$ of the highest probability region of the northern sky with the limiting magnitudes of 24.6 and 23.8 for i band and z band, respectively. MOA-cam3 covered 145 deg$^2$ of the skymap with MOA-red filter 2.5 months after the GW alert. Total area covered by the wide-field surveys was 986.5 deg$^2$. The integrated detection probability of all the observed area was $sim$29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 days after the event. Total of 238 nearby (<100 Mpc) galaxies were observed with the typical I band limiting magnitude of $sim$19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two third of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focussed on nearby galaxies in the GW error region and covered 4.7 square degrees (~2% of the probability in the rapidly-available GW error region; 0.3% of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical Telescope data, and note the importance to electromagnetic follow up of early notification of the progenitor details inferred from GW analysis.
We searched for an optical counterpart to the first gravitational wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the PESSTO spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 square degrees of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 days from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parameterised lightcurves with timescales of 4, 20 and 40 days and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of i = 19.2, 20.0 and 20.8 respectively for the three timescales. For long timescale parameterised lightcurves (with FWHM=~40d) we set upper limits of M_i <= -17.2 -0.9/+1.4 if the distance to GW150914 is D = 400 +/- 200Mpc. The number of type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering supernova like transients out to D = 400 +/- 200 Mpc.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves predicted by Einstein (1916). We report on the first optical observations of the Gravitational Wave (GW) source GW150914 error region with the Global MASTER Robotic Net. We detected several optical transients, which proved to be unconnected with the GW event. Our result is consistent with the assumption that gravitational waves were produced by a binary black hole merger. The detection of the event confirmed the main prediction of the population synthesis performed with the Scenario Machine formulated in Lipunov1997b.
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg$^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $5sigma$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$^{2}$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.