Do you want to publish a course? Click here

Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems

73   0   0.0 ( 0 )
 Added by Lindsay LeBlanc
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonators mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.



rate research

Read More

Atomic vapors offer many opportunities for manipulating electromagnetic signals across a broad range of the electromagnetic spectrum. Here, a microwave signal with an audio-frequency modulation encodes information in an optical signal by exploiting an atomic microwave-to-optical double resonance, and magnetic-field coupling that is amplified by a resonant high-Q microwave cavity. Using this approach, audio signals are encoded as amplitude or frequency modulations in a GHz carrier, transmitted through a cable or over free space, demodulated through cavity-enhanced atom-microwave interactions, and finally, optically detected to extract the original information. This atom-cavity signal transduction technique provides a powerful means by which to transfer information between microwave and optical fields, all using a relatively simple experimental setup without active electronics.
463 - S. Filipp , M. Goppl , J. M. Fink 2010
Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse exchange interaction between qubits, when they are non-resonant with the cavity but resonant with each other. We experimentally probe the inverse scaling of the inter-qubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, in the case of resonant qubits, the symmetry properties of the system lead to an allowed two-photon transition to the doubly excited qubit state and the formation of a dark state.
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Our experiments pave the way for implementation of cavity-mediated quantum gates between spin qubits and for realization of scalable quantum network nodes.
Spin ensemble based hybrid quantum systems suffer from a significant degree of decoherence resulting from the inhomogeneous broadening of the spin transition frequencies in the ensemble. We demonstrate that this strongly restrictive drawback can be overcome simply by burning two narrow spectral holes in the spin spectral density at judiciously chosen frequencies. Using this procedure we find an increase of the coherence time by more than an order of magnitude as compared to the case without hole burning. Our findings pave the way for the practical use of these hybrid quantum systems for the processing of quantum information.
Cavity-enhanced radiation pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction enabling amplification and cooling of mechanical motion. Here we demonstrate purely dispersive coupling of high Q nanomechanical oscillators to an ultra-high finesse optical microresonator via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure. Moreover, sub-fm/Hz^(1/2) displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum limit (SQL), which coincides with the nanomechanical oscillators zero-point fluctuations. The achievement of an imprecision at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the flexibility of the near-field coupling approach, it can be readily extended to a diverse set of nanomechanical oscillators and particularly provides a route to experiments where radiation pressure quantum backaction dominates at room temperature, enabling ponderomotive squeezing or QND measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا