Do you want to publish a course? Click here

Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

84   0   0.0 ( 0 )
 Added by Carlo Felice Manara
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium (ISM) gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.



rate research

Read More

We present a substantial extension of the mm-wave continuum photometry catalog for Taurus circumstellar dust disks. Combining new Submillimeter Array data with measurements in the literature, we construct a mm-wave luminosity distribution for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a (3-sigma) depth of ~3 mJy. The resulting census eliminates a longstanding bias against disks with late-type hosts, and thereby reveals a strong correlation between L_mm and the host spectral type. We confirm that this corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships: the results indicate a typical 1.3 mm flux density of 25 mJy for solar mass hosts and a power-law scaling L_mm propto M_star^1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from L_mm to M_disk favors an inherently linear M_disk propto M_star scaling, with a typical disk-to-star mass ratio of $sim$0.2--0.6%. The RMS dispersion around this regression is 0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a FWHM range of a factor of 40 on the inferred M_disk (or L_mm) at any given host mass. We argue that this relationship between M_disk and M_star likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of L_mm between Taurus and other clusters (abridged).
Although the Orion Nebula Cluster is one of the most studied clusters in the solar neighborhood, the evolution of the very low-mass members ($M_* < 0.25 , M_odot$) has not been fully addressed due to their faintness. Our goal is to verify if some young and very low-mass objects in the Orion Nebula Cluster show evidence of ongoing accretion using broadband VLT/X-Shooter spectra. For each target, we determined the corresponding stellar parameters, veiling, observed Balmer jump, and accretion rates. Additionally, we searched for the existence of circumstellar disks through available on-line photometry. We detected accretion activity in three young stellar objects in the Orion Nebula Cluster, two of them being in the very low-mass range. We also detected the presence of young transition disks with ages between 1 and 3.5 Myr.
Debris disks are classically considered to be gas-less systems, but recent (sub)millimeter observations have detected tens of those with rich gas content. The origin of the gas component remains unclear; namely, it can be protoplanetary remnants and/or secondary products deriving from large bodies. In order to be protoplanetary in origin, the gas component of the parental protoplanetary disk is required to survive for $gtrsim10{,rm Myr}$. However, previous models predict $lesssim 10{,rm Myr}$ lifetimes because of efficient photoevaporation at the late stage of disk evolution. In the present study, we investigate photoevaporation of gas-rich, optically-thin disks around intermediate-mass stars at a late stage of the disk evolution. The evolved system is modeled as those where radiation force is sufficiently strong to continuously blow out small grains ($lesssim 4 {,rm mu m}$), which are an essential component for driving photoevaporation via photoelectric heating induced by stellar far-ultraviolet (FUV). We find that the grain depletion reduces photoelectric heating, so that FUV photoevaporation is not excited. Extreme-ultraviolet (EUV) photoevaporation is dominant and yields a mass-loss rate of $2$--$5times10^{-10}(Phi_{rm EUV}/10^{41}{,rm s}^{-1})^{1/2},M_odot,{rm yr}^{-1}$, where $Phi_{rm EUV}$ is the EUV emission rate. The estimated lifetimes of the gas component are $sim 50 (M_{rm disk}/10^{-2},M_odot)(Phi_{rm EUV}/10^{41},{rm s}^{-1})^{1/2},{rm Myr}$ and depend on the ``initial disk mass at the point small grains have been depleted in the system. With an order estimation, we show that the gas component can survive for a much longer time around A-type stars than lower-mass stars. This trend is consistent with the higher frequency of gas-rich debris disks around A-type stars, implying the possibility of the gas component being protoplanetary remnants.
We present an open access grid of 3930 calculations of externally evaporating protoplanetary discs. This spans a range of disc sizes (1-400AU), disc masses, UV field strengths (10-10$^4$G$_0$) and stellar masses (0.05-1.9M$_odot$). The grid is publicly available for download, and offers a means of cheaply including external photoevaporation in disc evolutionary calculations. It can also be queried using an online tool for quick estimates of instantaneous mass loss rates (e.g for convenient evaluation of real observed systems). The `FRIED grid itself illustrates that for discs around stars $leq0.3$M$_odot$ external photoevaporation is effective down to small radii ($<50$AU) down to UV fields at least as weak as 10G$_0$. At the other end of the scale, in a $10^4$G$_0$ environment photoevaporation is effective down to 1AU even for stellar masses at least as high as 1.9M$_odot$. We also illustrate in which regimes CO survives in the photoevaporative outflow for significant mass loss rates; marking a system a good candidate to detect external photoevaporation in weak-intermediate UV environments through sub-Keplerian rotation. Finally we make illustrative mass loss rate estimates for discs in Taurus based on the Guilloteau et al. (2011) star-disc parameters, finding that around half are expected to have both significant mass loss and retain CO in the photoevaporative outflow.
WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star accretion disks at ages $gtrsim 20$ Myr, which we call ``Peter Pan disks, since they apparently refuse to grow up. We present four new Peter Pan disk candidates identified via the Disk Detective citizen science project, coupled with textit{Gaia} astrometry. We find that WISEA J044634.16-262756.1 and WISEA J094900.65-713803.1 both exhibit significant infrared excess after accounting for nearby stars within the 2MASS beams. The J0446 system has $>95%$ likelihood of Columba membership. The J0949 system shows $>95%$ likelihood of Carina membership. We present new GMOS optical spectra of all four objects, showing possible accretion signatures on all four stars. We present ground-based and textit{TESS} lightcurves of J0808 and 2MASS J0501-4337, including a large flare and aperiodic dipping activity on J0808, and strong periodicity on J0501. We find Pa$beta$ and Br$gamma$ emission indicating ongoing accretion in near-IR spectroscopy of J0808. Using observed characteristics of these systems, we discuss mechanisms that lead to accretion disks at ages $gtrsim20$ Myr, and find that these objects most plausibly represent long-lived CO-poor primordial disks, or ``hybrid disks, exhibiting both debris- and primordial-disk features. The question remains: why have gas-rich disks persisted so long around these particular stars?
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا