Massive MIMO, a candidate for 5G technology, promises significant gains in wireless data rates and link reliability by using large numbers of antennas (more than 64) at the base transceiver station (BTS). Extra antennas help by focusing the transmission and reception of signal energy into ever-smaller regions of space. This brings huge improvements in throughput. However, it requires a large number of Radio Frequency (RF) chains (usually equal to number of transmit antennas), which is a major drawback. One approach to overcome these issues is to use Spatial Modulation (SM). In SM, an index of transmit antenna is used as an additional source of information to improve the overall spectral efficiency. In particular, a group of any number of information bits is mapped into two constellations: a signal constellation based on modulation scheme and a spatial constellation to encode the index of the transmit antenna. However, a low spectral efficiency is main drawback of SM. Therefore, a combination of SM with Spatial Multiplexing is an effective way to increase spectral efficiency with limited number of RF chains.