We study the zero temperature conductance and magnetoconductance of ballistic textit{p-n} junctions in Weyl semimetals. Electron transport is mediated by Klein tunneling between textit{n}- and textit{p}- regions. The chiral anomaly that is realized in Weyl semimetals plays a crucial role in the magnetoconductance of the junction. With the exception of field orientations where the angle between $mathbf{B}$ and the junction plane is small, magnetoconductance is positive and linear in $B$ at both weak and strong magnetic fields. In contrast, magnetoconductance in conventional textit{p-n} junctions is always negative.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
We investigate the tunneling magnetoresistance in magnetic tunnel junctions (MTJs) comprised of Weyl semimetal contacts. We show that chirality-magnetization locking leads to a gigantic tunneling magnetoresistance ratio, an effect that does not rely on spin filtering by the tunnel barrier. Our results indicate that the conductance in the anti-parallel configuration is more sensitive to magnetization fluctuations than in MTJs with normal ferromagnets, and predicts a TMR as large as 10^4 % when realistic magnetization fluctuations are accounted for. In addition, we show that the Fermi arc states give rise to a non-monotonic dependence of conductance on the misalignment angle between the magnetizations of the two contacts.
Theory of light absorption and circular photocurrent in Weyl semimetals is developed for arbitrary large light intensities with account for both elastic and inelastic relaxation processes of Weyl fermions. The direct optical transition rate is shown to saturate at large intensity, and the saturation behaviour depends on the light polarization and on the ratio of the elastic and inelastic relaxation times. The linear-circular dichroism in absorption is shown to exceed 10~% at intermediate light wave amplitudes and fast energy relaxation. At large intensity $I$, the light absorption coefficient drops as $1/sqrt{I}$, and the circular photogalvanic current increases as $sqrt{I}$.
Using low-temperature high-magnetic-field scanning tunneling microscopy and spectroscopy (STM/STS), we systematically study a graphene quantum dot (GQD) defined by a circular graphene p-p junction. Inside the GQD, we observe a series of quasi-bound states arising from whispering-gallery-mode (WGM) confinement of the circular junction and directly visualize these quasi-bound states down to atomic dimensions. By applying a strong magnetic field, a large jump in energy of the quasi-bound states, which is about one-half the energy spacing between the quasi-bound states, is observed. Such a behavior results from turning on a {pi} Berry phase of massless Dirac fermions in graphene by a magnetic field. Moreover, our experiment demonstrates that a quasi-bound state splits into two peaks with an energy separation of about 26 meV when the Fermi level crosses the quasi-bound state, indicating that there are strong electron-electron interactions in the GQD.
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fertile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe$_2$, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points.