A Scaling Behavior of Bloch Oscillation in Weyl Semimetals


Abstract in English

We predict a linear logarithmical scaling law of Bloch oscillation dynamics in Weyl semimetals (WSMs), which can be applied to detect Weyl nodal points. Applying the semiclassical dynamics for quasiparticles which are accelerated bypassing a Weyl point, we show that transverse drift exhibits asymptotically a linear log-log relation with respect to the minimal momentum measured from the Weyl point. This linear scaling behavior is a consequence of the monopole structure nearby the Weyl points, thus providing a direct measurement of the topological nodal points, with the chirality and anisotropy being precisely determined. We apply the present results to two lattice models for WSMs which can be realized with cold atoms in experiment, and propose realistic schemes for the experimental detection. With the analytic and numerical results we show the feasibility of identifying topological Weyl nodal points based on the present prediction.

Download