Do you want to publish a course? Click here

Collinear antiferromagnetism in trigonal SrMn$_{2}$As$_{2}$ revealed by single-crystal neutron diffraction

149   0   0.0 ( 0 )
 Added by Pinaki Das
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fe pnictides and related materials have been a topic of intense research for understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn$_{2}$As$_{2}$ that crystallizes in a trigonal structure ($Pbar{3}m1$) and undergoes an antiferromagnetic (AFM) transition at $T_{textrm c}$ $= 118(2)$ K. The magnetic susceptibility remains nearly constant at temperatures $T le T_{textrm N}$ with $textbf{H}parallel textbf{c}$ whereas it decreases significantly with $textbf{H}parallel textbf{ab}$. This shows that the ordered Mn moments lie in the $textbf{ab}$-plane instead of aligning along the $textbf{c}$-axis as in tetragonal BaMn$_{2}$As$_{2}$. Single-crystal neutron diffraction measurements on SrMn$_{2}$As$_{2}$ demonstrate that the Mn moments are ordered in a collinear N{e}el AFM phase with $180^circ$ AFM alignment between a moment and all nearest neighbor moments in the basal plane and also perpendicular to it. Moreover, quasi-two-dimensional AFM order is manifested in SrMn$_{2}$As$_{2}$ as evident from the temperature dependence of the order parameter.



rate research

Read More

The hidden order phase in URu$_2$Si$_2$ is highly sensitive to electronic doping. A special interest in silicon-to-phosphorus substitution is due to the fact that it may allow one, in part, to isolate the effects of tuning the chemical potential from the complexity of the correlated $f$ and $d$ electronic states. We investigate the new antiferromagnetic phase that is induced in URu$_2$Si$_{2-x}$P$_x$ at $xgtrsim0.27$. Time-of-flight neutron diffraction of a single crystal ($x=0.28$) reveals $c$-axis collinear $mathbf{q}_mathrm{m}=(frac12,frac12,frac12)$ magnetic structure with localized magnetic moments ($approx2.1,mu_mathrm{B}$). This points to an unexpected analogy between the (Si,P) and (Ru,Rh) substitution series. Through further comparisons with other tuning studies of URu$_2$Si$_2$, we are able to delineate the mechanisms by which silicon-to-phosphorus substitution affects the system. In particular, both the localization of itinerant 5$f$ electrons as well as the choice of $mathbf{q}_m$ appears to be consequences of the increase in chemical potential. Further, enhanced exchange interactions are induced by chemical pressure and lead to magnetic order, in which an increase in inter-layer spacing may play a special role.
149 - W. T. Jin , M. Meven , H. Deng 2019
The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be $mathit{k}$ = (1/3, 1/3, 0), and the magnetic reflections disppeared above $mathit{T_{N}}$ = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 $mu_{B}$ on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 $mu_{B}$. With increasing temperature up to 95 K, the Cr moments cant out of the $mathit{ab}$ plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the $mathit{c}$-direction magnetic susceptibility and the kink in the magnetic order parameter at $mathit{T_{O}}$ ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.
The trigonal structure of EuMn$_{2}$As$_{2}$ is an anomaly in the tetragonal 122-type pnictide family. We report detailed investigation of the underlying magnetic correlations in single crystal EuMn$_{2}$As$_{2}$ using high resolution elastic neutron scattering measurements. The system undergoes through two successive antiferromagnetic transitions at $T$ = 135 K and 14.4 K, respectively. Numerical modeling of the experimental data reveals the long range antiferromagnetic correlation of Mn-ions in the $a-b$ plane below $T_N1$ = 135 K. Mn spins are aligned closer to the diagonal axis of the unit cell. The lower temperature transition, below $T_N2$ = 14.4 K, is found to arise due to the long range antiferromagnetic correlation of Eu spins that are rotated by $theta$ = 55 degree from the $c$-axis of the unit cell.
119 - W. T. Jin , S. Nandi , Y. Xiao 2013
The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is unambiguously determined by single-crystal neutron diffraction. A long-range ferromagnetic order of the Eu2+ moments along the c-direction is revealed below the magnetic phase transition temperature Tc = 17 K. In addition, the antiferromagnetism of the Fe2+ moments still survives and the tetragonal-to-orthorhombic structural phase transition is also observed, although the transition temperatures of the Fe-spin density wave (SDW) order and the structural phase transition are significantly suppressed to Tn = 70 K and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We present the microscopic evidences for the coexistence of the Eu-ferromagnetism (FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC) competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable influence of the rare-earth element Eu on the magnetism of the Fe sublattice.
Crystallographic, electronic transport, thermal and magnetic properties are reported for SrMn2As2 and CaMn2As2 single crystals grown using Sn flux. Rietveld refinements of powder x-ray diffraction data show that the two compounds are isostructural and crystallize in the trigonal CaAl2Si2-type structure (space group P-3m1), in agreement with the literature. Electrical resistivity rho versus temperature T measurements demonstrate insulating ground states for both compounds with activation energies of 85 meV for SrMn2As2 and 61 meV for CaMn2As2. In a local-moment picture, the Mn^{+2} 3d^5 ions are expected to have high-spin S = 5/2 with spectroscopic splitting factor g = 2. Magnetic susceptibility chi and heat capacity measurements versus T reveal antiferromagnetic (AFM) transitions at TN = 120(2) K and 62(3) K for SrMn2As2 and CaMn2As2, respectively. The anisotropic chi(T < TN) data indicate that the hexagonal c axis is the hard axis and hence that the ordered Mn moments are aligned in the ab plane. The chi(T) for both compounds and Cp(T) data for SrMn2As2 show strong dynamic short-range AFM correlations from TN up to at least 900 K, likely associated with quasi-two-dimensional connectivity of strong AFM exchange interactions between the Mn spins within the corrugated honeycomb Mn layers parallel to the ab plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا