Do you want to publish a course? Click here

Optically probing symmetry breaking in the chiral magnet Cu2OSeO3

98   0   0.0 ( 0 )
 Added by Rolf Versteeg
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfer gap. These crystal-field excitations are optically allowed due to the lack of inversion symmetry at the Cu sites. Optical polarization rotation measurements were used to study the structural chirality and magnetic order. The temperature dependence of the natural optical rotation, originating in the chiral crystal structure, provides evidence for a finite magneto-electric effect in the helimagnetic phase. We find a large magneto-optical susceptibility on the order of V(540nm)~10^4 rad/(T*m) in the helimagnetic phase and a maximum Faraday rotation of ~165deg/mm in the ferrimagnetic phase. The large value of V can be explained by considering spin cluster formation and the relative ease of domain reorientation in this metamagnetic material. The magneto-optical activity allows us to map the magnetic phase diagram, including the skyrmion lattice phase. In addition to this, we probe and discuss the nature of the various magnetic phase transitions in Cu2OSeO3.



rate research

Read More

We discovered in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phonon origin appears spontaneously at a series of critical sliding velocities, in correspondence with large peaks of the sliding friction. The non-linear equations governing this phenomenon resemble the rotational instability of a forced string. However, several new elements, exquisitely nano appear here, with the crucial involvement of Umklapp and of sliding nanofriction.
The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the interfacial DMI originating from structural inversion asymmetry and strong spin-orbit coupling favors chiral Neel-type domain walls (DWs) whose energetics and mobility remain at issue. Here, we characterize a new effect in which domains expand unidirectionally in response to a combination of out-of-plane and in-plane magnetic fields, with the growth direction controlled by the in-plane field strength. These growth directionalities and symmetries with applied fields cannot be understood from static treatments alone. We theoretically demonstrate that perpendicular field torques stabilize steady-state magnetization profiles highly asymmetric in elastic energy, resulting in a dynamic symmetry breaking consistent with the experimental findings. This phenomenon sheds light on the mechanisms governing the dynamics of Neel-type DWs and expands the utility of field-driven DW motion to probe and control chiral DWs.
The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex non-collinear spin orders through interactions of relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram, composed of helical spiral, conical spiral and skyrmion crystal phases. Here, we report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements we observe a new multi-domain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify physical origin of the new state and discuss its multiferroic properties.
We report the characterisation of natural samples of the cubic pyrite mineral MnS2 using very high resolution synchrotron X-ray diffraction techniques. At low temperatures we find a new low temperature polymorph, which results from coupling between magnetic and lattice degrees of freedom. Below the magnetic ordering temperature T_N= 48 K, we detect a pseudo-tetragonal distortion with a tiny c/a ratio of 1.0006. The structure can be refined in the space group Pbca. The symmetry lowering reduces magnetic frustration in the fcc Mn2+ lattice and is likely responsible for the previously reported lock-in of the magnetic propagation vector. This behaviour is similar to the frustration driven symmetry breaking reported in other three-dimensional Heisenberg magnets like the chromate spinels
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner (GMOR) relation. For the renormalisation-group-invariant ratios we obtain [Sigma^RGI]^(1/3)/F =2.77(2)(4) and Lambda^MSbar/F = 3.6(2), which correspond to [Sigma^MSbar(2 GeV)]^(1/3) =263(3)(4) MeV and F=85.8(7)(20) MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا