No Arabic abstract
Symmetry breaking is an importance concept in nuclear physics and other fields of physics. Self-consistent coupling between the mean-field potential and the single-particle motion is a key ingredient in the unified model of Bohr and Mottelson, which could lead to a deformed nucleus as a consequence of spontaneous breaking of the rotational symmetry. Some remarks on the finite-size quantum effects are given. In finite nuclei, the deformation inevitably introduces the rotation as a symmetry-restoring collective motion (Anderson-Nambu-Goldstone mode), and the rotation affects the intrinsic motion. In order to investigate the interplay between the rotational and intrinsic motions in a variety of collective phenomena, we use the cranking prescription together with the quasiparticle random phase approximation. At low spin, the coupling effect can be seen in the generalized intensity relation. A feasible quantization of the cranking model is presented, which provides a microscopic approach to the higher-order intensity relation. At high spin, the semiclassical cranking prescription works well. We discuss properties of collective vibrational motions under rapid rotation and/or large deformation. The superdeformed shell structure plays a key role in emergence of a new soft mode which could lead to instability toward the $K^pi=1^-$ octupole shape. A wobbling mode of excitation, which is a clear signature of the triviality, is discussed in terms of a microscopic point of view. A crucial role played by the quasiparticle alignment is presented.
Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of several symmetric heavy-ion collisions in the framework of the Stochastic Mean-Field (SMF) approach. Since at bombarding energies below the fusion barrier, di-nuclear structure is maintained, it is possible to describe nucleon exchange as a diffusion process familiar from deep-inelastic collisions. Quantal diffusion coefficients, including memory effects, for proton and neutron exchanges are extracted microscopically employing the SMF approach. The quantal calculations of neutron and proton variances are compared with the semi-classical results.
The structure of nuclei with $Zsim100$ is investigated systematically by the Cranked Shell Model (CSM) with pairing correlations treated by a Particle-Number Conserving (PNC) method. In the PNC method, the particle number is conserved and the Pauli blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters ($kappa$ and $mu$) is proposed. The experimental kinematic moments of inertia and the band-head energies are reproduced quite well by the PNC-CSM calculations. The band crossing, the effects of high-$j$ intruder orbitals and deformation are discussed in detail.
The isospin breaking effects due to the Coulomb interaction in weakly-bound nuclei are studied using the Gamow Shell Model, a complex-energy configuration interaction approach which simultaneously takes into account many-body correlations between valence nucleons and continuum effects. We investigate the near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an isomultiplet. Illustrative calculations are carried out for the T=1 isobaric triplet. By using a shell-model Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly bound or unbound systems the structure of isobaric analog states varies within the isotriplet and impacts the energy dependence of spectroscopic factors. We discuss the partial dynamical isospin symmetry present in isospin-stretched systems, in spite of the Coulomb interaction that gives rise to large mirror symmetry breaking effects.
The symmetry energy obtained with the effective Skyrme energy density functional is related to the values of isoscalar effective mass and isovector effective mass, which is also indirectly related to the incompressibility of symmetric nuclear matter. In this work, we analyze the values of symmetry energy and its related nuclear matter parameters in five-dimensional parameter space by describing the heavy ion collision data, such as isospin diffusion data at 35 MeV/u and 50 MeV/u, neutron skin of $^{208}$Pb, and tidal deformability and maximum mass of neutron star. We obtain the parameter sets which can describe the isospin diffusion, neutron skin, tidal deformability and maximum mass of neutron star, and give the incompressibility $K_0$=250.23$pm$20.16 MeV, symmetry energy coefficient $S_0$=31.35$pm$2.08 MeV, the slope of symmetry energy $L$=59.57$pm$10.06 MeV, isoscalar effective mass $m_s^*/m$=0.75$pm$0.05 and quantity related to effective mass splitting $f_I$=0.005$pm$0.170. At two times normal density, the symmetry energy we obtained is in 35-55 MeV. To reduce the large uncertainties of $f_I$, more critical works in heavy ion collisions at different beam energies are needed.
We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC). Ground state binding energies, the neutron and proton number dependence of quadrupole deformations and Q$_alpha$ values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Q$_alpha$ values, relevant for planning future experiments are presented.