No Arabic abstract
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q. et al. is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. The independence between the kinematic viscosity and the thermodynamic consistency, surface tension is founded. By homogeneous and heterogeneous cavitation simulation, the capability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of collapsing bubble is consistent with the results from experiments and simulations by other numerical method. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is available and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
A rigorous free energy model for ternary fluid flows with density ratio up to of order $O(10^3)$ is presented and implemented using the entropic lattice Boltzmann scheme. The model is thermodynamically consistent and allows a broad range of surface tension ratios, covering both partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straight-forward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: Two for the far-field flow---accuracy of the hydrodynamic moments and squirmer-squirmer interactions---and two that require the near field to be accurately resolved---a squirmer confined to a tube and one scattering off a spherical obstacle---which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.
Conventional lattice Boltzmann models for the simulation of fluid dynamics are restricted by an error in the stress tensor that is negligible only for vanishing flow velocity and at a singular value of the temperature. To that end, we propose a unified formulation that restores Galilean invariance and isotropy of the stress tensor by introducing an extended equilibrium. This modification extends lattice Boltzmann models to simulations with higher values of the flow velocity and can be used at temperatures that are higher than the lattice reference temperature, which enhances computational efficiency by decreasing the number of required time steps. Furthermore, the extended model remains valid also for stretched lattices, which are useful when flow gradients are predominant in one direction. The model is validated by simulations of two- and three-dimensional benchmark problems, including the double shear layer flow, the decay of homogeneous isotropic turbulence, the laminar boundary layer over a flat plate and the turbulent channel flow.
A new lattice Boltzmann model for reactive ideal gas mixtures is presented. The model is an extension to reactive flows of the recently proposed multi-component lattice Boltzmann model for compressible ideal gas mixtures with Stefan-Maxwell diffusion for species interaction. First, the kinetic model for the Stefan--Maxwell diffusion is enhanced to accommodate a source term accounting the change of the mixture composition due to chemical reaction. Second, by including the heat of formation in the energy equation, the thermodynamic consistency of the underlying compressible lattice Boltzmann model for momentum and energy allows a realization of the energy and temperature change due to chemical reactions. This obviates the need for ad-hoc modelling with source terms for temperature or heat. Both parts remain consistently coupled through mixture composition, momentum, pressure, energy and enthalpy. The proposed model uses the standard three-dimensional lattices and is validated with a set of benchmarks including laminar burning speed in the hydrogen-air mixture and circular expanding premixed flame.
Hard particle erosion and cavitation damage are two main wear problems that can affect the internal components of hydraulic machinery such as hydraulic turbines or pumps. If both problems synergistically act together, the damage can be more severe and result in high maintenance costs. In this work, a study of the interaction of hard particles and cavitation bubbles is developed to understand their interactive behavior. Experimental tests and numerical simulations using computational fluid dynamics (CFD) were performed. Experimentally, a cavitation bubble was generated with an electric spark near a solid surface, and its interaction with hard particles of different sizes and materials was observed using a high-speed camera. A simplified analytical approach was developed to model the behavior of the particles near the bubble interface during its collapse. Computationally, we simulated an air bubble that grew and collapsed near a solid wall while interacting with one particle near the bubble interface. Several simulations with different conditions were made and validated with the experimental data. The experimental data obtained from particles above the bubble were consistent with the numerical results and analytical study. The particle size, density and position of the particle with respect to the bubble interface strongly affected the maximum velocity of the particles.