We investigate the global variation of moduli of linear sections of a general hypersurface. We prove a generic Torelli result for a large proportion of cases, and we obtain a complete picture of the global variation of moduli of line slices of a general hypersurface.
In this paper we extend the well known theorem of Angelo Lopez concerning the Picard group of the general space projective surface containing a given smooth projective curve, to the intermediate Neron-Severi group of a general hypersurface in any smooth projective variety.
We study the variation of linear sections of hypersurfaces in $mathbb{P}^n$. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree $d$ hypersurface in $mathbb{P}^n$ vary maximally for $d geq n+3$. In the process, we generalize the classical Grauert-Mulich theorem about lines in projective space, both to $k$-planes in projective space and to free rational curves on arbitrary varieties.
We study closures of GL_2(R)-orbits on the total space of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyperelliptic locus or parameterize curves whose Jacobian has additional endomorphisms. This follows from a cohomological description of the tangent bundle to strata. For non-generic strata similar results can be shown by a case-by-case inspection. We also propose to study a notion of linear manifold that comprises Teichmueller curves, Hilbert modular surfaces and the ball quotients of Deligne and Mostow. Moreover, we give an explanation for the difference between Hilbert modular surfaces and Hilbert modular threefolds with respect to this notion of linearity.
We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in $mathbb{R}mathrm{P}^n$. Using a random spectral sequence, we prove an asymptotically exact estimate on the expected number of connected components in the complement of $s$ such hypersurfaces in $mathbb{R}mathrm{P}^n$. We also investigate the same problem in the case where the hypersurfaces are defined by random quadratic polynomials. In this case, we establish a connection between the Betti numbers of such arrangements with the expected behavior of a certain model of a randomly defined geometric graph. While our general result implies that the average zeroth Betti number of the union of random hypersurface arrangements is bounded from above by a function that grows linearly in the number of polynomials in the arrangement, using the connection with random graphs, we show an upper bound on the expected zeroth Betti number of random quadrics arrangements that is sublinear in the number of polynomials in the arrangement. This bound is a consequence of a general result on the expected number of connected components in our random graph model which could be of independent interest.
A congruence is a surface in the Grassmannian ${rm Gr}(2, 4)$. In this paper, we consider the normalization of congruence of bitangents to a hypersurface in $mathbb P^3$. We call it the Fano congruence of bitangents. We give a criterion for smoothness of the Fano congruence of bitangents and describe explicitly their degenerations in a general Lefschetz pencil in the space of hypersurfaces in $mathbb P^3$.