Hard X-ray Luminosity Function of Tidal Disruption Events: First Results from MAXI Extragalactic Survey


Abstract in English

We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of $-5/3$, a systematic search using the MAXI data in the first 37 months detected four TDEs, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is $0.0007$--$34%$. We confirm that at $z lesssim 1.5$ the contamination by TDEs to the hard X-ray luminosity functions of active galactic nuclei is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.

Download