Do you want to publish a course? Click here

Search for transient gravitational waves in coincidence with short duration radio transients during 2007-2013

77   0   0.0 ( 0 )
 Added by LVC publications
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an archival search for transient gravitational-wave bursts in coincidence with 27 single pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes Fast Radio Bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

rate research

Read More

Soft gamma repeaters and anomalous X-ray pulsars are thought to be magnetars, neutron stars with strong magnetic fields of order $mathord{sim} 10^{13}$--$10^{15} , mathrm{gauss}$. These objects emit intermittent bursts of hard X-rays and soft gamma rays. Quasiperiodic oscillations in the X-ray tails of giant flares imply the existence of neutron star oscillation modes which could emit gravitational waves powered by the magnetars magnetic energy reservoir. We describe a method to search for transient gravitational-wave signals associated with magnetar bursts with durations of 10s to 1000s of seconds. The sensitivity of this method is estimated by adding simulated waveforms to data from the sixth science run of Laser Interferometer Gravitational-wave Observatory (LIGO). We find a search sensitivity in terms of the root sum square strain amplitude of $h_{mathrm{rss}} = 1.3 times 10^{-21} , mathrm{Hz}^{-1/2}$ for a half sine-Gaussian waveform with a central frequency $f_0 = 150 , mathrm{Hz}$ and a characteristic time $tau = 400 , mathrm{s}$. This corresponds to a gravitational wave energy of $E_{mathrm{GW}} = 4.3 times 10^{46} , mathrm{erg}$, the same order of magnitude as the 2004 giant flare which had an estimated electromagnetic energy of $E_{mathrm{EM}} = mathord{sim} 1.7 times 10^{46} (d/ 8.7 , mathrm{kpc})^2 , mathrm{erg}$, where $d$ is the distance to SGR 1806-20. We present an extrapolation of these results to Advanced LIGO, estimating a sensitivity to a gravitational wave energy of $E_{mathrm{GW}} = 3.2 times 10^{43} , mathrm{erg}$ for a magnetar at a distance of $1.6 , mathrm{kpc}$. These results suggest this search method can probe significantly below the energy budgets for magnetar burst emission mechanisms such as crust cracking and hydrodynamic deformation.
Reflections from objects in Earth orbit can produce sub-second, star-like optical flashes similar to astrophysical transients. Reflections have historically caused false alarms for transient surveys, but the population has not been systematically studied. We report event rates for these orbital flashes using the Evryscope Fast Transient Engine, a low-latency transient detection pipeline for the Evryscopes. We select single-epoch detections likely caused by Earth satellites and model the event rate as a function of both magnitude and sky position. We measure a rate of $1800^{+600}_{-280}$ sky$^{-1}$ hour$^{-1}$, peaking at $m_g = 13.0$, for flashes morphologically degenerate with real astrophysical signals in surveys like the Evryscopes. Of these, $340^{+150}_{-85}$ sky$^{-1}$ hour$^{-1}$ are bright enough to be visible to the naked eye in typical suburban skies with a visual limiting magnitude of $Vapprox4$. These measurements place the event rate of orbital flashes orders of magnitude higher than the combined rate of public alerts from all active all-sky fast-timescale transient searches, including neutrino, gravitational-wave, gamma-ray, and radio observatories. Short-timescale orbital flashes form a dominating foreground for un-triggered searches for fast transients in low-resolution, wide-angle surveys. However, events like fast radio bursts (FRBs) with arcminute-scale localization have a low probability ($sim10^{-5}$) of coincidence with an orbital flash, allowing optical surveys to place constraints on their potential optical counterparts in single images. Upcoming satellite internet constellations, like SpaceX Starlink, are unlikely to contribute significantly to the population of orbital flashes in normal operations.
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 s in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between $3.4 times 10^{-5}$ - $9.4 times 10^{-4}$ Mpc$^{-3}$ yr$^{-1}$ at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Interference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; citep{LOFAR}) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.
As the sensitivity and observing time of gravitational-wave detectors increase, a more diverse range of signals is expected to be observed from a variety of sources. Especially, long-lived gravitational-wave transients have received interest in the last decade. Because most of long-duration signals are poorly modeled, detection must rely on generic search algorithms, which make few or no assumption on the nature of the signal. However, the computational cost of those searches remains a limiting factor, which leads to sub-optimal sensitivity. Several detection algorithms have been developed to cope with this issue. In this paper, we present a new data analysis pipeline to search for un-modeled long-lived transient gravitational-wave signals with duration between 10 and 1000 s, based on an excess cross-power statistic in a network of detectors. The pipeline implements several new features that are intended to reduce computational cost and increase detection sensitivity for a wide range of signal morphologies. The method is generalized to a network of an arbitrary number of detectors and aims to provide a stable interface for further improvements. Comparisons with a previous implementation of a similar method on simulated and real gravitational-wave data show an overall increase in detection efficiency depending on the signal morphology, and a computing time reduced by at least a factor 10.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا