No Arabic abstract
The geometry of the set of restrictions of rank-one tensors to some of their coordinates is studied. This gives insight into the problem of rank-one completion of partial tensors. Particular emphasis is put on the semialgebraic nature of the problem, which arises for real tensors with constraints on the parameters. The algebraic boundary of the completable region is described for tensors parametrized by probability distributions and where the number of observed entries equals the number of parameters. If the observations are on the diagonal of a tensor of format $dtimesdotstimes d$, the complete semialgebraic description of the completable region is found.
Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the multidimensional nature of high-order tensors, the matrix approaches, e.g., matrix factorization and direct matricization of tensors, are often not ideal for tensor completion and recovery. In this paper, we introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion. Our model possesses a sparse regularization term to promote a sparse core tensor of the Tucker decomposition, which is beneficial for tensor data compression. Moreover, we enforce low-rank regularization terms on factor matrices of the Tucker decomposition for inducing the low-rankness of the tensor with a cheap computational cost. Numerically, we propose a customized ADMM with enough easy subproblems to solve the underlying model. It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors. A series of computational experiments on real-world data sets, including internet traffic data sets, color images, and face recognition, demonstrate that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.
Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further deal with its sensitivity to sparse component as it does in tensor principle component analysis, we propose robust tensor ring completion (RTRC), which separates latent low-rank tensor component from sparse component with limited number of measurements. The low rank tensor component is constrained by the weighted sum of nuclear norms of its balanced unfoldings, while the sparse component is regularized by its l1 norm. We analyze the RTRC model and gives the exact recovery guarantee. The alternating direction method of multipliers is used to divide the problem into several sub-problems with fast solutions. In numerical experiments, we verify the recovery condition of the proposed method on synthetic data, and show the proposed method outperforms the state-of-the-art ones in terms of both accuracy and computational complexity in a number of real-world data based tasks, i.e., light-field image recovery, shadow removal in face images, and background extraction in color video.
We give a sufficient criterion for a lower bound of the cactus rank of a tensor. Then we refine that criterion in order to be able to give an explicit sufficient condition for a non-redundant decomposition of a tensor to be minimal and unique.
Tensor completion estimates missing components by exploiting the low-rank structure of multi-way data. The recently proposed methods based on tensor train (TT) and tensor ring (TR) show better performance in image recovery than classical ones. Compared with TT and TR, the projected entangled pair state (PEPS), which is also called tensor grid (TG), allows more interactions between different dimensions, and may lead to more compact representation. In this paper, we propose to perform image completion based on low-rank tensor grid. A two-stage density matrix renormalization group algorithm is used for initialization of TG decomposition, which consists of multiple TT decompositions. The latent TG factors can be alternatively obtained by solving alternating least squares problems. To further improve the computational efficiency, a multi-linear matrix factorization for low rank TG completion is developed by using parallel matrix factorization. Experimental results on synthetic data and real-world images show the proposed methods outperform the existing ones in terms of recovery accuracy.
Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods often assume a simple uniform missing mechanism. In this work, we study matrix completion from corrupted data under a novel low-rank missing mechanism. The probability matrix of observation is estimated via a high dimensional low-rank matrix estimation procedure, and further used to complete the target matrix via inverse probabilities weighting. Due to both high dimensional and extreme (i.e., very small) nature of the true probability matrix, the effect of inverse probability weighting requires careful study. We derive optimal asymptotic convergence rates of the proposed estimators for both the observation probabilities and the target matrix.