Do you want to publish a course? Click here

High spatial resolution optical imaging of the multiple T Tauri system LkH{alpha} 262/LkH{alpha} 263

379   0   0.0 ( 0 )
 Added by Sergio Velasco
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report high spatial resolution i band imaging of the multiple T Tauri system LkH$alpha$ 262/LkH$alpha$ 263 obtained during the first commissioning period of the Adaptive Optics Lucky Imager (AOLI) at the 4.2 m William Herschel Telescope, using its Lucky Imaging mode. AOLI images have provided photometry for each of the two components LkH$alpha$ 263 A and B (0.41 arcsec separation) and marginal evidence for an unresolved binary or a disc in LkH$alpha$ 262. The AOLI data combined with previously available and newly obtained optical and infrared imaging show that the three components of LkH$alpha$ 263 are co-moving, that there is orbital motion in the AB pair, and, remarkably, that LkH$alpha$ 262-263 is a common proper motion system with less than 1 mas/yr relative motion. We argue that this is a likely five-component gravitationally bounded system. According to BT-settl models the mass of each of the five components is close to 0.4 M$_{odot}$ and the age is in the range 1-2 Myr. The presence of discs in some of the components offers an interesting opportunity to investigate the formation and evolution of discs in the early stages of multiple very low-mass systems. In particular, we provide tentative evidence that the disc in 263C could be coplanar with the orbit of 263AB.



rate research

Read More

Magakian et al. (2019) called attention to the current bright state of LkHa 225 South, which over the past two decades has changed from $>20^m$ to $<13^m$. We present recent optical photometric monitoring that shows colorless, non-sinusoidal, periodic brightness variations. The oscillations occur every 43 days, and have amplitude $sim$0.7 mag with some variation among cycles. We also present new flux-calibrated optical and near-infrared spectroscopy, which we model in terms of a keplerian disk. Additional high dispersion spectra demonstrate the similarity of the absorption line pattern to some categories of ``mixed temperature accretion outburst objects. At blue wavelengths, LkHa 225 South has a pure absorption spectrum and is a good spectral match to the FU Ori stars V1515 Cyg and V1057 Cyg. At red optical and infrared wavelengths, however, the spectrum is more similar to Gaia 19ajj, showing emission in TiO, CO, and metals. Sr II lines indicate a low surface gravity atmosphere. There are also signatures of a strong wind/outflow. LkHa 225 South was moderately bright in early 1950s as well as in late 1980s, with evidence for deep fades during intervening epochs. The body of evidence suggests that LkHa225 South is another case of a source with episodically enhanced accretion that causes brightening by orders of magnitude, and development of a hot absorption spectrum and warm wind. It is similar to Gaia 19ajj, but also reminiscent in its long brightening time and brightness oscillation near peak, to the embedded sources L1634 IRS7 and ESO Ha 99.
116 - Gergely Csepany 2017
Context. In multiple pre-main-sequence systems the lifetime of circumstellar disks appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims. We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine if the components are gravitationally bound and orbital motion is visible, derive orbital parameters and investigate possible correlations between the binary parameters and disk states. Methods. We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding $16 + 2times2=20$ binary pairs) in the Taurus-Auriga star forming region from the survey by Leinert et al. (1993), with spectral types from K1 to M5 and separations from 0.22 (31 AU) to 5.8 (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results. We found ten pairs to orbit each other, five pairs that may show orbital motion and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 $mu$m infra-red excess varies between 0.1 and 7.2 magnitudes (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disk. Conclusions. We have detected orbital motion in young T Tauri systems over a timescale of $approx20$ years. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.
212 - J.M Brown , G.A. Blake , C. Qi 2008
Mid-infrared spectrophotometric observations have revealed a small sub-class of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model dependent method of finding central holes. We present here the direct characterization of a 40 AU radius inner gap in the disk around LkHa 330 through 340 GHz (880 micron) dust continuum imaging with the Submillimeter Array (SMA). This large gap is fully resolved by the SMA observations and mostly empty of dust with less than 1.3 x 10^-6 M_solar of solid particles inside of 40 AU. Gas (as traced by accretion markers and CO M-band emission) is still present in the inner disk and the outer edge of the gap rises steeply -- features in better agreement with the underlying cause being gravitational perturbation than a more gradual process such as grain growth. Importantly, the good agreement of the spatially resolved data and spectrophometry-based model lends confidence to current interpretations of SEDs with significant dust emission deficits as arising from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.
292 - Tracy L. Beck 2004
We present the results of our monitoring study of the IR photometric and spectroscopic variability of the T Tau multiple system. We also present data on the apparent position of T Tau S with respect to T Tau N, and two new spatially resolved observations of the T Tau Sa-Sb binary. T Tau N has not varied by more than 0.2 magnitudes in K and L flux during the 8 years of our observations, though its Br gamma and Br alpha emission line fluxes have varied by nearly a factor of four during this time. For the unresolved T Tau S system, we have derived a 20 year light curve based on our images and on measurements available in the literature. T Tau S varies by 2-3 magnitudes in K and L-band brightness in a ``redder when faint manner, consistent with changes along the line of sight in the amount of material that follows an ISM extinction law. Absorption in the 3.05um water-ice feature is seen only in the spectra of T Tau S and it displays variations in depth and profile. H_2 (2.12 um) emission is also detected only at the position of T Tau S; the H_2, Br gamma and Br alpha emission line fluxes also vary. We have found that the apparent positions of T Tau S with respect to T Tau N and T Tau Sb with respect to Sa are consistent with gravitationally bound orbital motion. The possible orbits of the T Tau S binary imply that Sa is likely the most massive component in this young triple. A reanalysis of the motion of the radio source associated with T Tau S provides no evidence for an ejection event in the T Tau system.
The LkH$alpha$ 101 cluster takes its name from its more massive member, the LkH$alpha$ 101star, which is an $sim15$ M$_odot$ star whose true nature is still unknown. The distance to the LkH$alpha$ 101 cluster has been controversial for the last few decades, with estimated values ranging from 160 to 800 pc. We have observed members and candidate members of the LkH$alpha$ 101 cluster with signs of magnetic activity, using the Very Long Baseline Array, in order to measure their trigonometric parallax and, thus, obtain a direct measurement of their distances. A young star member, LkH$alpha$ 101 VLA J043001.15+351724.6, was detected at four epochs as a single radio source. The best fit to its displacement on the plane of the sky yields a distance of 535$pm$29 pc. We argue that this is the distance to the LkH$alpha$ 101 cluster.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا