We use supersymmetry to calculate exact spectral densities for a class of complex random matrix models having the form $M=S+LXR$, where $X$ is a random noise part $X$ and $S,L,R$ are fixed structure parts. This is a certain version of the external field random matrix models. We found two-fold integral formulas for arbitrary structural matrices. We investigate some special cases in detail and carry out numerical simulations. The presence or absence of a normality condition on $S$ leads to a qualitatively different behavior of the eigenvalue densities.