Do you want to publish a course? Click here

Implementing Strassens Algorithm with BLIS

69   0   0.0 ( 0 )
 Added by Robert Van De Geijn
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We dispel with street wisdom regarding the practical implementation of Strassens algorithm for matrix-matrix multiplication (DGEMM). Conventional wisdom: it is only practical for very large matrices. Our implementation is practical for small matrices. Conventional wisdom: the matrices being multiplied should be relatively square. Our implementation is practical for rank-k updates, where k is relatively small (a shape of importance for libraries like LAPACK). Conventional wisdom: it inherently requires substantial workspace. Our implementation requires no workspace beyond buffers already incorporated into conventional high-performance DGEMM implementations. Conventional wisdom: a Strassen DGEMM interface must pass in workspace. Our implementation requires no such workspace and can be plug-compatible with the standard DGEMM interface. Conventional wisdom: it is hard to demonstrate speedup on multi-core architectures. Our implementation demonstrates speedup over conventional DGEMM even on an Intel(R) Xeon Phi(TM) coprocessor utilizing 240 threads. We show how a distributed memory matrix-matrix multiplication also benefits from these advances.



rate research

Read More

Conventional GPU implementations of Strassens algorithm (Strassen) typically rely on the existing high-performance matrix multiplication (GEMM), trading space for time. As a result, such approaches can only achieve practical speedup for relatively large, squarish matrices due to the extra memory overhead, and their usages are limited due to the considerable workspace. We present novel Strassen primitives for GPUs that can be composed to generate a family of Strassen algorithms. Our algorithms utilize both the memory and thread hierarchies on GPUs, reusing shared memory and register files inherited from GEMM, fusing additional operations, and avoiding extra workspace. We further exploit intra- and inter-kernel parallelism by batching, streaming, and employing atomic operations. We also develop a performance model for NVIDIA Volta GPUs to select the appropriate blocking parameters and predict the performance for GEMM and Strassen. Overall, our 1-level Strassen can achieve up to 1.11x speedup with a crossover point as small as 1,536 compared to cublasSgemm on a NVIDIA Tesla V100 GPU. With additional workspace, our 2-level Strassen can achieve 1.19x speedup with a crossover point at 7,680.
Tensor contraction (TC) is an important computational kernel widely used in numerous applications. It is a multi-dimensional generalization of matrix multiplication (GEMM). While Strassens algorithm for GEMM is well studied in theory and practice, extending it to accelerate TC has not been previously pursued. Thus, we believe this to be the first paper to demonstrate how one can in practice speed up tensor contraction with Strassens algorithm. By adopting a Block-Scatter-Matrix format, a novel matrix-centric tensor layout, we can conceptually view TC as GEMM for a general stride storage, with an implicit tensor-to-matrix transformation. This insight enables us to tailor a recent state-of-the-art implementation of Strassens algorithm to TC, avoiding explicit transpositions (permutations) and extra workspace, and reducing the overhead of memory movement that is incurred. Performance benefits are demonstrated with a performance model as well as in practice on modern single core, multicore, and distributed memory parallel architectures, achieving up to 1.3x speedup. The resulting implementations can serve as a drop-in replacement for various applications with significant speedup.
In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix multiplication could be performed with only 7 multiplications instead of 8. The latter construction was arrived at by a process of elimination and appears to come out of thin air. Here, we give the simplest and most transparent proof of Strassens algorithm that we are aware of, using only a simple unitary 2-design and a few easy lines of calculation. Moreover, using basic facts from the representation theory of finite groups, we use 2-designs coming from group orbits to generalize our construction to all n (although the resulting algorithms arent optimal for n at least 3).
We approach the problem of implementing mixed-datatype support within the general matrix multiplication (GEMM) operation of the BLIS framework, whereby each matrix operand A, B, and C may be stored as single- or double-precision real or complex values. Another factor of complexity, whereby the computation is allowed to take place in a precision different from the storage precisions of either A or B, is also included in the discussion. We first break the problem into mostly orthogonal dimensions, considering the mixing of domains separately from mixing precisions. Support for all combinations of matrix operands stored in either the real or complex domain is mapped out by enumerating the cases and describing an implementation approach for each. Supporting all combinations of storage and computation precisions is handled by typecasting the matrices at key stages of the computation---during packing and/or accumulation, as needed. Several optional optimizations are also documented. Performance results gathered on a 56-core Marvell ThunderX2 and a 52-core Intel Xeon Platinum demonstrate that high performance is mostly preserved, with modest slowdowns incurred from unavoidable typecast instructions. The mixed-datatype implementation confirms that combinatoric intractability is avoided, with the framework relying on only two assembly microkernels to implement 128 datatype combinations.
124 - Max Tuengerthal 2006
In this paper, we propose a unification algorithm for the theory $E$ which combines unification algorithms for $E_{std}$ and $E_{ACUN}$ (ACUN properties, like XOR) but compared to the more general combination methods uses specific properties of the equational theories for further optimizations. Our optimizations drastically reduce the number of non-deterministic choices, in particular those for variable identification and linear orderings. This is important for reducing both the runtime of the unification algorithm and the number of unifiers in the complete set of unifiers. We emphasize that obtaining a ``small set of unifiers is essential for the efficiency of the constraint solving procedure within which the unification algorithm is used. The method is implemented in the CL-Atse tool for security protocol analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا