We construct a $p$-adic analog to AdS/CFT, where an unramified extension of the $p$-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case of a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of $p$-adic chordal distance and of Wilson loops. Our presentation includes an introduction to $p$-adic numbers.
We study the holographic dual of the simplest notion of spin in a $p$-adic field theory, namely Greens functions which involve non-trivial sign characters over the $p$-adic numbers. In order to recover these sign characters from bulk constructions, we find that we must introduce a non-dynamical $U(1)$ gauge field on the line graph of the Bruhat-Tits tree. Wilson lines of this gauge field on suitable paths yield the desired sign characters. We show explicitly how to start with complex scalars or fermions in the bulk, coupled to the $U(1)$ gauge field, and compute the holographic two-point functions of their dual operators on the boundary.
In this summary of my talk at Strings 2016, I explain how classical dynamics on an infinite tree graph can be dual to a conformal field theory defined over the $p$-adic numbers. An informal introduction to $p$-adic numbers is followed by a presentation of results on holographic three- and four-point functions. The simplicity of $p$-adic field theories and their similarity to ordinary field theories are illustrated through comparisons of holographic correlators and computations of simple loop diagrams on the field theory side. I close with a discussion of challenges and directions for future work.
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with $p$-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. We compute simple correlators of the operator holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity in five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted $Sp(1)$ structure, which extends the quaternionic Kahler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.
We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies with arbitrary values of the spatial curvature parameter k. The bulk solution is a nonstatic foliation of the generalised Schwarzschild-AdS black hole with a horizon of constant curvature k. The boundary matter is an expanding perfect fluid that satisfies the first law of thermodynamics for all values of the temperature and the spatial curvature, but it admits a description as a scale-invariant fluid in local thermal equilibrium only when the inverse Hawking temperature is negligible compared with the spatial curvature length scale. A Casimir-type term in the holographic energy-momentum tensor is identified from the threshold of black hole formation and is shown to take different forms for k>=0 and k<0.