No Arabic abstract
We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a hard cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a soft cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching transition in the driven-dissipative Bose-Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.
Laser technology has developed and accelerated photo-induced nonequilibrium physics from both scientific and engineering viewpoints. The Floquet engineering, i.e., controlling material properties and functionalities by time-periodic drives, is a forefront of quantum physics of light-matter interaction, but limited to ideal dissipationless systems. For the Floquet engineering extended to a variety of materials, it is vital to understand the quantum states emerging in a balance of the periodic drive and energy dissipation. Here we derive the general description for nonequilibrium steady states (NESS) in periodically driven dissipative systems by focusing on the systems under high-frequency drive and time-independent Lindblad-type dissipation with the detailed balance condition. Our formula correctly describes the time-average, fluctuation, and symmetry property of the NESS, and can be computed efficiently in numerical calculations. Our approach will play fundamental roles in Floquet engineering in a broad class of dissipative quantum systems such as atoms and molecules, mesoscopic systems, and condensed matter.
We study the phase-ordering of parametrically and incoherently driven microcavity polaritons after an infinitely rapid quench across the critical region. We confirm that the system, despite its driven-dissipative nature, fulfils dynamical scaling hypothesis for both driving schemes by exhibiting self-similar patterns for the two-point correlator at late times of the phase ordering. We show that polaritons are characterised by the dynamical critical exponent z ~ 2 with topological defects playing a fundamental role in the dynamics, giving logarithmic corrections both to the power-law decay of the number of vortices and to the associated growth of the characteristic length-scale.
We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that the Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant dissipation when the decoherence time is substantially shorter than the cycle of driving, once the driving field strength becomes strong enough. In an off-resonant condition, we demonstrate that the Floquet states can be realized even in weak field regimes because the system is not excited and the decoherence mechanism is not activated. Once the field strength becomes strong enough, the system can be excited by nonlinear processes and the decoherence process becomes active. As a result, the Floquet states are significantly disturbed by the environment even in the off-resonant condition. Thus, we show here that the suppression of heating is a key condition for the realization of Floquet states in both on and off-resonant conditions not only because it prevents material damage but also because it contributes to preserving coherence.
We derive a systematic high-frequency expansion for the effective Hamiltonian and the micromotion operator of periodically driven quantum systems. Our approach is based on the block diagonalization of the quasienergy operator in the extended Floquet Hilbert space by means of degenerate perturbation theory. The final results are equivalent to those obtained within a different approach [Phys. Rev. A {bf 68}, 013820 (2003), Phys. Rev. X {bf 4}, 031027 (2014)] and can also be related to the Floquet-Magnus expansion [J. Phys. A {bf 34}, 3379 (2000)]. We discuss that the dependence on the driving phase, which plagues the latter, can lead to artifactual symmetry breaking. The high-frequency approach is illustrated using the example of a periodically driven Hubbard model. Moreover, we discuss the nature of the approximation and its limitations for systems of many interacting particles.