Non-equilibrium dissipative systems usually exhibit multistability, leading to the presence of propagative domain between steady states. We investigate the front propagation into an unstable state in discrete media. Based on a paradigmatic model of coupled chain of oscillators and populations dynamics, we calculate analytically the average speed of these fronts and characterize numerically the oscillatory front propagation. We reveal that different parts of the front oscillate with the same frequency but with different amplitude. To describe this latter phenomenon we generalize the notion of the Peierls-Nabarro potential, achieving an effective continuous description of the discreteness effect.