Do you want to publish a course? Click here

Active role of the nonmagnetic cations in magnetic interactions for the double-perovskite Sr2BOsO6 (B=Y, In, Sc)

70   0   0.0 ( 0 )
 Added by Sudipta Kanungo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using first-principles density functional theory, we have investigated the electronic and magnetic properties of recently synthesized and characterized 5d double-perovskites Sr2BOsO6 (B=Y, In, Sc). The electronic structure calculations show that in all compounds, the Os5+ (5d3) site is the only magnetically active one, while Y3+, In3+ and Sc3+ remain in nonmagnetic states, with Sc/Y and In featuring d0 and d10 electronic configurations, respectively. Our studies reveal the important role of closed-shell (d10) versus open-shell (d0) electronic configurations of the nonmagnetic sites in determining the overall magnetic exchange interactions. Although the magnetic Os5+ (5d3) site is the same in all compounds, the magnetic super-exchange interactions mediated by non-magnetic Y/In/Sc species are strongest for Sr2ScOsO6, weakest for Sr2InOsO6, and intermediate in case of the Y (d0), due to different energy overlaps between Os-5d and Y/In/Sc-d states. This explains the experimentally observed substantial differences in the magnetic transition temperatures of these materials, despite of an identical magnetic site and underlying magnetic ground state. Furthermore, short range Os-Os exchange-interactions are more prominent than long range Os-Os interactions in these compounds, which contrasts with the behavior of other 3d-5d double-perovskites.



rate research

Read More

Polycrystalline samples of double perovskites Ba2BOsO6 (B = Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba2BOsO6 (B = Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are -590 K for Ba2ScOsO6, -571 K for Ba2YOsO6, and -155 K for Ba2InOsO6. Sc3+ and Y3+ have the open-shell d0 electronic configuration, while In3+ has the closed-shell d10. This indicates that a d0 B-type cation induces stronger overall magnetic exchange interactions in comparison to a d10. Comparison of Ba2BOsO6 (B = Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions.
Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as the quantum spin liquids (QSLs) in real materials. In this work, we address exchange interactions in Sr2CuTe$_{1-x}$W$_{x}$O, a series of double perovskites that realize the spin-1/2 square lattice and were suggested to harbor a QSL ground state arising from random distribution of non-magnetic ions. Our {it ab initio} multi-reference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor explained by the crucial role of unoccupied states of non-magnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the end compounds, as well as explain the magnetic excitations in Sr2CuTe$_{0.5}$W$_{0.5}$O as emerging from the bond-disordered exchange couplings. Our results provide crucial understanding of the role of non-magnetic cations in exchange interactions paving the way to further exploration of QSL phases in bond-disordered materials.
We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr$_{2}B$OsO$_6$ ($B={rm Fe, Y, In}$). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr$_{2}$FeOsO$_6$ within the AF1 antiferromagnetic phase for temperatures below $T_{rm N}=135 pm 2~{rm K}$. Upon cooling below $T_2 approx 67~{rm K}$ the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below $T_{rm N}=53~{rm K}$ and 25~K for Sr$_{2}$YOsO$_6$ and Sr$_{2}$InOsO$_6$, respectively.
We report a muon spin rotation ($mu^{+}$SR) study of the magnetic properties of the double perovskite compound LaSrNiReO$_{6}$. Using the unique length and time scales of the $mu^{+}$SR technique, we successfully clarify the magnetic ground state of LaSrNiReO$_{6}$, which was previously deemed as a spin glass state. Instead, our $mu^{+}$SR results point towards a long-range dynamically ordered ground state below $T_{rm C}= 23$ K, for which a static limit is foreseen at $T=0$. Furthermore, between 23 K$<Tleq$300 K, three different magnetic phases are identified: a dense ($23$ K$<Tleq75$ K), a dilute ($75$ K$<Tleq250$ K), and a paramagnetic ($T>250$ K) state. Our results reveal how two separate, yet intertwined magnetic lattices interact within the unique double perovskite structure and the importance of using complementary experimental techniques to obtain a complete understanding of the microscopic magnetic properties of complex materials.
Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetry without breaking time reversal symmetry leading to a nematic phase just above magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of Ts ~ 9.5K, above the magnetic ordering temperature of Tc ~ 7.5K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in high field NMR experiments [Lu et al., Nat. Comm. 8 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between Tc and Ts where long-range magnetic order is absent giving support for the existence of the proposed nematic phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا