Crystallization in two dimensions and a discrete Gauss-Bonnet theorem


Abstract in English

We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (R. C. Heitmann, C. Radin, J. Stat. Phys. 22, 281-287, 1980), which concerns a system of $N$ identical atoms in two dimensions interacting via the idealized pair potential $V(r)=+infty$ if $r<1$, $-1$ if $r=1$, $0$ if $r>1$. This is done by endowing the bond graph of a general particle configuration with a suitable notion of {it discrete curvature}, and appealing to a {it discrete Gauss-Bonnet theorem} (O. Knill, Elem. Math. 67, 1-17, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential $V(r)=r^{-6}-2r^{-12}$, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

Download