Do you want to publish a course? Click here

A Novel Third Order Numerical Method for Solving Volterra Integro-Differential Equations

119   0   0.0 ( 0 )
 Added by Jayvant Patade
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari technique (DJM) is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods.



rate research

Read More

The aim of the present paper is to introduce a new numerical method for solving nonlinear Volterra integro-differential equations involving delay. We apply trapezium rule to the integral involved in the equation. Further, Daftardar-Gejji and Jafari method (DGJ) is employed to solve the implicit equation. Existence-uniqueness theorem is derived for solutions of such equations and the error and convergence analysis of the proposed method is presented. We illustrate efficacy of the newly proposed method by constructing examples.
247 - Tomoaki Okayama 2013
A Sinc-Nystrom method for Volterra integro-differential equations was developed by Zarebnia in 2010. The method is quite efficient in the sense that exponential convergence can be obtained even if the given problem has endpoint singularity. However, its exponential convergence has not been proved theoretically. In addition, to implement the method, the regularity of the solution is required, although the solution is an unknown function in practice. This paper reinforces the method by presenting two theoretical results: 1) the regularity of the solution is analyzed, and 2) its convergence rate is rigorously analyzed. Moreover, this paper improves the method so that a much higher convergence rate can be attained, and theoretical results similar to those listed above are provided. Numerical comparisons are also provided.
107 - Quanhui Zhu , Jiang Yang 2021
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high order derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives.
In this work, we present a collocation method based on the Legendre wavelet combined with the Gauss--Jacobi quadrature formula for solving a class of fractional delay-type integro-differential equations. The problem is considered with either initial or boundary conditions and the fractional derivative is described in the Caputo sense. First, an approximation of the unknown solution is considered in terms of the Legendre wavelet basis functions. Then, we substitute this approximation and its derivatives into the considered equation. The Caputo derivative of the unknown function is approximated using the Gauss--Jacobi quadrature formula. By collocating the obtained residual at the well-known shifted Chebyshev points, we get a system of nonlinear algebraic equations. In order to obtain a continuous solution, some conditions are added to the resulting system. Some error bounds are given for the Legendre wavelet approximation of an arbitrary function. Finally, some examples are included to show the efficiency and accuracy of this new technique.
This paper presents a novel semi-analytical collocation method to solve multi-term variable-order time fractional partial differential equations (VOTFPDEs). In the proposed method it employs the Fourier series expansion for spatial discretization, which transforms the original multi-term VOTFPDEs into a sequence of multi-term variable-order time fractional ordinary differential equations (VOTFODEs). Then these VOTFODEs can be solved by using the recent-developed backward substitution method. Several numerical examples verify the accuracy and efficiency of the proposed numerical approach in the solution of multi-term VOTFPDEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا