Do you want to publish a course? Click here

Towards Conceptual Compression

235   0   0.0 ( 0 )
 Added by Frederic Besse
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We introduce a simple recurrent variational auto-encoder architecture that significantly improves image modeling. The system represents the state-of-the-art in latent variable models for both the ImageNet and Omniglot datasets. We show that it naturally separates global conceptual information from lower level details, thus addressing one of the fundamentally desired properties of unsupervised learning. Furthermore, the possibility of restricting ourselves to storing only global information about an image allows us to achieve high quality conceptual compression.

rate research

Read More

We present a machine learning-based approach to lossy image compression which outperforms all existing codecs, while running in real-time. Our algorithm typically produces files 2.5 times smaller than JPEG and JPEG 2000, 2 times smaller than WebP, and 1.7 times smaller than BPG on datasets of generic images across all quality levels. At the same time, our codec is designed to be lightweight and deployable: for example, it can encode or decode the Kodak dataset in around 10ms per image on GPU. Our architecture is an autoencoder featuring pyramidal analysis, an adaptive coding module, and regularization of the expected codelength. We also supplement our approach with adversarial training specialized towards use in a compression setting: this enables us to produce visually pleasing reconstructions for very low bitrates.
Interpretability has become an important topic of research as more machine learning (ML) models are deployed and widely used to make important decisions. Most of the current explanation methods provide explanations through feature importance scores, which identify features that are important for each individual input. However, how to systematically summarize and interpret such per sample feature importance scores itself is challenging. In this work, we propose principles and desiderata for emph{concept} based explanation, which goes beyond per-sample features to identify higher-level human-understandable concepts that apply across the entire dataset. We develop a new algorithm, ACE, to automatically extract visual concepts. Our systematic experiments demonstrate that alg discovers concepts that are human-meaningful, coherent and important for the neural networks predictions.
We present a neural video compression method based on generative adversarial networks (GANs) that outperforms previous neural video compression methods and is comparable to HEVC in a user study. We propose a technique to mitigate temporal error accumulation caused by recursive frame compression that uses randomized shifting and un-shifting, motivated by a spectral analysis. We present in detail the network design choices, their relative importance, and elaborate on the challenges of evaluating video compression methods in user studies.
A popular approach to learning encoders for lossy compression is to use additive uniform noise during training as a differentiable approximation to test-time quantization. We demonstrate that a uniform noise channel can also be implemented at test time using universal quantization (Ziv, 1985). This allows us to eliminate the mismatch between training and test phases while maintaining a completely differentiable loss function. Implementing the uniform noise channel is a special case of the more general problem of communicating a sample, which we prove is computationally hard if we do not make assumptions about its distribution. However, the uniform special case is efficient as well as easy to implement and thus of great interest from a practical point of view. Finally, we show that quantization can be obtained as a limiting case of a soft quantizer applied to the uniform noise channel, bridging compression with and without quantization.
Learning how to model complex scenes in a modular way with recombinable components is a pre-requisite for higher-order reasoning and acting in the physical world. However, current generative models lack the ability to capture the inherently compositional and layered nature of visual scenes. While recent work has made progress towards unsupervised learning of object-based scene representations, most models still maintain a global representation space (i.e., objects are not explicitly separated), and cannot generate scenes with novel object arrangement and depth ordering. Here, we present an alternative approach which uses an inductive bias encouraging modularity by training an ensemble of generative models (experts). During training, experts compete for explaining parts of a scene, and thus specialise on different object classes, with objects being identified as parts that re-occur across multiple scenes. Our model allows for controllable sampling of individual objects and recombination of experts in physically plausible ways. In contrast to other methods, depth layering and occlusion are handled correctly, moving this approach closer to a causal generative scene model. Experiments on simple toy data qualitatively demonstrate the conceptual advantages of the proposed approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا