Do you want to publish a course? Click here

Magneto-Elastic Coupling in a potential ferromagnetic 2D Atomic Crystal

193   0   0.0 ( 0 )
 Added by Yao Tian
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cr2Ge2Te6 has been of interest for decades, as it is one of only a few naturally forming ferromagnetic semiconductors. Recently, this material has been revisited due to its potential as a 2 dimensional semiconducting ferromagnet and a substrate to induce anomalous quantum Hall states in topological insulators. However, many relevant properties of Cr2Ge2Te6 still remain poorly understood, especially the spin-phonon coupling crucial to spintronic, multiferrioc, thermal conductivity, magnetic proximity and the establishment of long range order on the nanoscale. We explore the interplay between the lattice and magnetism through high resolution micro-Raman scattering measurements over the temperature range from 10 K to 325 K. Strong spin-phonon coupling effects are confirmed from multiple aspects: two low energy modes splits in the ferromagnetic phase, magnetic quasielastic scattering in paramagnetic phase, the phonon energies of three modes show clear upturn below Tc, and the phonon linewidths change dramatically below Tc as well. Our results provide the first demonstration of spin-phonon coupling in a potential 2 dimensional atomic crystal.



rate research

Read More

Using high resolution neutron diffraction and capacitance dilatometry we show that the thermal evolution of the helimagnetic state in CoMnSi is accompanied by a change in inter-atomic distances of up to 2%, the largest ever found in a metallic magnet. Our results and the picture of competing exchange and strongly anisotropic thermal expansion that we use to understand them sheds light on a new mechanism for large magnetoelastic effects that does not require large spin-orbit coupling.
We report an ultrasonic investigation of the elastic moduli on a single crystal of hexagonal YMnO_3 as a function of temperature. Stiffening anomalies in the antiferromagnetic Neel state below T_N = 72.4 K are observed on all the four elastic moduli C_{ii}. The anomalies are the most important on C_{11} and C_{66} for in-plane elastic deformations; this is consistent with a strong coupling of the lattice with the in-plane exchange interactions. We use a Landau free energy model to account for these elastic anomalies. We derive an expression which relates the temperature profile of the anomaly to the order parameter; the critical exponent associated to this parameter $beta$ = 0.42 is not consistent with a chiral XY or 3D Heisenberg universality class, but more in agreement with a conventional antiferromagnetic long range order. A tiny softening anomaly on C_{11} for which hysteresis effects are observed could be indicative of an interaction between ferroelectric and magnetic domains at T_N. Moreover, magnetic fluctuations effects both above and below T_N are identified through abnormal temperature and magnetic field effects.
The resonance modes and the related effects to the transmission of elastic waves in a two dimensional phononic crystal formed by periodic arrangements of a two blocks unit cell in one direction are studied. The unit cell consists of two asymmetric elliptic cylinders coated with silicon rubber and embedded in a rigid matrix. The modes are obtained by the semi-analytic method in the least square collocation scheme and confirmed by the finite element method simulations. Two resonance modes, corresponding to the vibration of the cylinder along the long and short axes, give rise to resonance reflections of elastic waves. One mode in between the two modes, related to the opposite vibration of the two cylinders in the unit cell in the direction along the layer, results in the total transmission of elastic waves due to zero effective mass density at the frequency. The resonance frequency of this new mode changes continuously with the orientation angle of the elliptic resonator.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multiferroics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
107 - S.-F. Wu , W.-L. Zhang , L. Li 2017
We used polarization-resolved Raman scattering to study magneto-elastic coupling in Ba(Fe$_{1-x}$Au$_{x}$)$_2$As$_2$ crystals as a function of light Au-doping, materials for which temperatures of the structural transition ($T_S$) and of the magnetic ordering transition ($T_N$) split. We study the appearance of the $A_g$(As)phonon intensity in the $XY$ scattering geometry that is very weak just below $T_S$, but for which the intensity is significantly enhanced below $T_N$. In addition, the $A_g$(As) phonon shows an asymmetric line shape below $T_N$ and an anomalous linewidth broadening upon Au-doping in the magnetic phase. We demonstrate that the anomalous behavior of the $A_g$(As) phonon mode in the $XY$ scattering geometry can be consistently described by a Fano model involving the $A_g$(As) phonon mode interacting with the $B_{2g}$ symmetry-like magnetic continuum in which the magneto-elastic coupling constant is proportional to the magnetic order parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا