Do you want to publish a course? Click here

Lepton flavor violating processes in the minimal 3-3-1 model with singlet sterile neutrinos

136   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider the minimal 3-3-1 model with three sterile neutrinos transforming as singlet under the $SU(3)_Lotimes U(1)_X$ symmetry. This model, with or without sterile neutrinos, predicts flavor violating interactions in both quark and lepton sectors, since all the charged fermions mass matrices can not be assumed diagonal in any case. Here we accommodate the lepton masses and the Pontecorvo-Maki-Nakawaga-Sakata matrix at the same time, and as consequence the Yukawa couplings and the unitary matrices which diagonalize the mass matrices are not free parameters anymore. We study some phenomenological consequences, i.e., $l_ito l_jl_k bar{l}_k$ and $l_ito l_jgamma$ which are induced by neutral and doubly charged particles present in the model. In particular we find that if the decay $muto eebar{e}$ is observed in the future, the only particle in the model that could explain this decay is the doubly charged vector bilepton.



rate research

Read More

The one loop contribution to the lepton flavor violating decay $h^0rightarrow mutau$ of the SM-like neutral Higgs (LFVHD) in the 3-3-1 model with neutral lepton is calculated using the unitary gauge. We have checked in detail that the total contribution is exactly finite, and the divergent cancellations happen separately in two parts of active neutrinos and exotic heavy leptons. By numerical investigation, we have indicated that the one-loop contribution of the active neutrinos is very suppressed while that of exotic leptons is rather large. The branching ratio of the LFVHD strongly depends on the Yukawa couplings between exotic leptons and $SU(3)_L$ Higgs triplets. This ratio can reach $10^{-5}$ providing large Yukawa couplings and constructive correlations of the $SU(3)_L$ scale ($v_3$) and the charged Higgs masses. The branching ratio decreases rapidly with the small Yukawa couplings and large $v_3$.
In this work we show that from the spectrum of particles of a 3-3-1 gauge model with heavy sterile neutrinos we can have up to three Cold Dark Matter candidates as WIMPs. We obtain their relic abundance and analyze their compatibility with recent direct detection experiments, exploring the possibility of explaining the two events reported by CDMS-II. An interesting outcome of this 3-3-1 model, concerning direct detection of two WIMPs in the model, is a strong bound on the symmetry breaking scale, which imposes it to be above 3 TeV.
In this article we investigate the prospects of searching for sterile neutrinos in lowscale seesaw scenarios via the lepton flavour violating (but lepton number conserving) dilepton dijet signature. In our study, we focus on the final state $e^pm mu^mp jj$ at the HL-LHC and the FCC-hh (or the SppC). We perform a multivariate analysis at the detector level including the dominant SM backgrounds from di-top, di-boson, and tri-boson. Under the assumption of the active-sterile neutrino mixings $|V_{ l N}|^2=|theta_e|^2=|theta_mu|^2$ and $|V_{ tau N}|^2 = |theta_tau|^2=0$, the sensitivities on the signal production cross section times branching ratio $sigma(p p to l^pm N)times {rm BR} (N to l^{ mp} jj)$ and on $|V_{ l N}|^2$ for sterile neutrino mass $M_N$ between 200 and 1000 GeV are derived. For the benchmark $M_N=500$ GeV, when ignoring systematic uncertainties at the HL-LHC (FCC-hh/SppC) with 3 (20) ${rm ab}^{-1}$ luminosity, the resulting 2-$sigma$ limits on $|V_{ l N}|^2$ are $4.9times 10^{-3}$ ($7.0times 10^{-5}$), while the 2 -$sigma$ limit on $sigma times {rm BR}$ are $4.4times10^{-2}$ ($1.6times10^{-2}$) fb, respectively. The effect of the systematic uncertainty is also studied and found to be important for sterile neutrinos with smaller masses. We also comment on searches with $tau^pm mu^mp jj$ and $tau^pm e^mp jj$ final states.
We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/sqrt{3} T_8+mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.
We show that in the minimal 3-3-1 model the flavor changing neutral currents (FCNCs) do not impose necessarily strong constraints on the mass of the $Z^prime$ of the model if we also consider the neutral scalar contributions to such processes, like the neutral mesons mass difference and rare semileptonic decays. We first obtain numerical values for all the mixing matrices of the model i.e., the unitary matrices that rotate the left- and right-handed quarks in each charge sector which give the correct mass of all the quarks and the CKM mixing matrix. Then, we find that there is a range of parameters in which the neutral scalar contributions to these processes may interfere with those of the $Z^prime$, implying this vector boson may be lighter than it has been thought.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا