No Arabic abstract
We use projection methods to construct (global) quantum states with prescribed reduced (marginal) states, and possibly with some special properties such as having specific eigenvalues, having specific rank and extreme von Neumann or Renyi entropy. Using convex analysis, optimization techniques on matrix manifolds, we obtain algorithms to solve the problem. Matlab programs are written based on these algorithms and numerical examples are illustrated. The numerical results reveal new patterns leading to new insights and research problems on the topic.
We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently experimentally feasible. The parameters of the ellipse and the lattice and the coefficients of the constituent coherent states are optimized numerically, via a genetic algorithm, in order to obtain the best approximation. It is found that for certain quantum states the obtained approximation is better than the ones known from the literature thus far.
The correlations of certain entangled quantum states can be fully reproduced via a local model. We discuss in detail the practical implementation of an algorithm for constructing local models for entangled states, recently introduced by Hirsch et al. [Phys. Rev. Lett. 117, 190402 (2016)] and Cavalcanti et al. [Phys. Rev. Lett. 117, 190401 (2016)]. The method allows one to construct both local hidden state (LHS) and local hidden variable (LHV) models, and can be applied to arbitrary entangled states in principle. Here we develop an improved implementation of the algorithm, discussing the optimization of the free parameters. For the case of two-qubit states, we design a ready-to-use optimized procedure. This allows us to construct LHS models (for projective measurements) that are almost optimal, as we show for Bell diagonal states, for which the optimal model has recently been derived. Finally, we show how to construct fully analytical local models, based on the output of the convex optimization procedure.
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to general entangled states, which consists in verifying that the statistics resulting from a finite set of measurements is local, a much simpler problem. This leads to a sequence of tests which, in the limit, fully capture the set of quantum states admitting a LHV model. Similar methods are developed for constructing local hidden state models. We illustrate the practical relevance of these methods with several examples, and discuss further applications.
The decomposition of a matrix, as a product of factors with particular properties, is a much used tool in numerical analysis. Here we develop methods for decomposing a matrix $C$ into a product $X Y$, where the factors $X$ and $Y$ are required to minimize their distance from an arbitrary pair $X_0$ and $Y_0$. This type of decomposition, a projection to a matrix product constraint, in combination with projections that impose structural properties on $X$ and $Y$, forms the basis of a general method of decomposing a matrix into factors with specified properties. Results are presented for the application of these methods to a number of hard problems in exact factorization.
Suppose we would like to approximate all local properties of a quantum many-body state to accuracy $delta$. In one dimension, we prove that an area law for the Renyi entanglement entropy $R_alpha$ with index $alpha<1$ implies a matrix product state representation with bond dimension $mathrm{poly}(1/delta)$. For (at most constant-fold degenerate) ground states of one-dimensional gapped Hamiltonians, it suffices that the bond dimension is almost linear in $1/delta$. In two dimensions, an area law for $R_alpha(alpha<1)$ implies a projected entangled pair state representation with bond dimension $e^{O(1/delta)}$. In the presence of logarithmic corrections to the area law, similar results are obtained in both one and two dimensions.