We establish pointwise and distributional fractal tube formulas for a large class of relative fractal drums in Euclidean spaces of arbitrary dimensions. A relative fractal drum (or RFD, in short) is an ordered pair $(A,Omega)$ of subsets of the Euclidean space (under some mild assumptions) which generalizes the notion of a (compact) subset and that of a fractal string. By a fractal tube formula for an RFD $(A,Omega)$, we mean an explicit expression for the volume of the $t$-neighborhood of $A$ intersected by $Omega$ as a sum of residues of a suitable meromorphic function (here, a fractal zeta function) over the complex dimensions of the RFD $(A,Omega)$. The complex dimensions of an RFD are defined as the poles of its meromorphically continued fractal zeta function (namely, the distance or the tube zeta function), which generalizes the well-known geometric zeta function for fractal strings. These fractal tube formulas generalize in a significant way to higher dimensions the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen and later on, by the first author, Pearse and Winter in the case of fractal sprays. They are illustrated by several interesting examples. These examples include fractal strings, the Sierpinski gasket and the 3-dimensional carpet, fractal nests and geometric chirps, as well as self-similar fractal sprays. We also propose a new definition of fractality according to which a bounded set (or RFD) is considered to be fractal if it possesses at least one nonreal complex dimension or if its fractal zeta function possesses a natural boundary. This definition, which extends to RFDs and arbitrary bounded subsets of $mathbb{R}^N$ the previous one introduced in the context of fractal strings, is illustrated by the Cantor graph (or devils staircase) RFD, which is shown to be `subcritically fractal.