Do you want to publish a course? Click here

Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

77   0   0.0 ( 0 )
 Added by Sergio A. Cellone
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z=0.222 +/- 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909+/-4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying $N_mathrm{H}$ between the six available spectra, we found a variable index $Gamma$ running from ~2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying $Gamma$, we found variable absorption columns of N_H ~ 0.34 x $10^{-22}$ cm$^{-2}$ in 2000-2001 years, and 0.54-0.75 x $10^{-22}$ cm$^{-2}$ in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 x 10$^{43}$ erg s$^{-1}$ derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at $z approx 0.22$.



rate research

Read More

The AGN NGC 2110 presents a peculiar case among the Seyfert 2 galaxies, as it displays also features of radio-loud objects and is classified as FR-I radio galaxy. Here we analyse simultaneous INTEGRAL and Swift data taken in 2008 and 2009. We reconstruct the spectral energy distribution in order to provide further insight. The combined X-ray spectrum is well represented by an absorbed cut-off power law model plus soft excess. Combining all available data, the spectrum appears flat (photon index 1.25 +- 0.04) with the high-energy cut-off being at 82 +- 9 keV. The intrinsic absorption is moderate (NH = 4E22 1/cm**2), the iron K-alpha line is weak (EW = 114 eV), and no reflection component is detected in the INTEGRAL spectrum. The data indicate that the X-ray spectrum is moderately variable both in flux and spectral shape. The 2008 spectrum is slightly steeper (photon index 1.5, Ec = 90 keV) with the source being brighter, and flatter in 2009 (photon index 1.4, Ec = 120 keV) in the lower flux state. The spectral energy distribution gives a bolometric luminosity of L = 2E44 erg/sec. NGC 2110 appears to be a borderline object between radio loud narrow line Seyfert 1 and radio quiet Seyfert 2. Its spectral energy distribution might indeed be dominated by non-thermal emission arising from the jet.
We present a spectral and imaging analysis of the XMM-Newton and Chandra observations of the Seyfert 2 galaxy ESO138-G001, with the aim of characterizing the circumnuclear material responsible for the soft (0.3-2.0 keV) and hard (5-10 keV) X-ray emission. We confirm that the source is absorbed by Compton-thick gas. However, if a self-consistent model of reprocessing from cold toroidal material is used (MYTorus), a possible scenario requires the absorber to be inhomogenous, its column density along the line of sight being larger than the average column density integrated over all lines- of-sight through the torus. The iron emission line may be produced by moderately ionised iron (FeXII-FeXIII), as suggested by the shifted centroid energy and the low K{beta}/K{alpha} flux ratio. The soft X-ray emission is dominated by emission features, whose main excitation mechanism appears to be photoionisation, as confirmed by line diagnostics and the use of self-consistent models (CLOUDY).
We report the discovery of a secondary pair of radio lobes in the Seyfert galaxy NGC 2639 with polarization-sensitive observations with the Karl G. Jansky Very Large Array (VLA). The presence of these lobes, which are aligned nearly perpendicular to the known set of radio lobes observed in the east-west direction, has not been reported previously in the literature. The in-band rotation measure image shows gradients in both the lobes indicative of organised magnetic field structures on kpc-scales. The magnetic field structure is aligned with the jet/lobe direction in both the lobes. Based on the settled optical morphology of the host galaxy, it is likely that a minor merger that did not disrupt the host galaxy structure is responsible for the observed features in NGC 2639. This also explains the near 90$^o$ change in the jet direction; the current jet direction being the result of a new accretion disk formed by the minor merger, whose direction was a result of the angular momentum of the inflowing merger gas.
NGC 300 is a low-mass disk galaxy in the Sculptor group. In the literature, it has been identified as a pure exponential disk galaxy, as its luminosity profile could be well fitted with a single exponential law over many disk scale lengths (Type I). We investigate the stellar luminosity distribution of NGC 300 using $Hubble$ $Space$ $Telescope$ (HST) archive data, reaching farther and deeper than any other previous studies. Color magnitude diagrams show a significant population of old red giant branch (RGB) stars in all fields out to $Rsim19$ kpc ($32$), as well as younger populations in the inner regions. We construct the density profiles of the young, intermediate-aged, and old stellar populations. We find two clear breaks in the density profiles of the old RGB and intermediate-aged stars: one down-bending (Type II) at $Rsim5.9$ kpc, and another up-bending (Type III) at $Rsim8.3$ kpc. Moreover, the old RGB stars exhibit a negative radial color gradient with an up-bending at $Rsim8$~kpc, beyond which the stellar populations are uniformly old ($>$7~Gyr) and metal-poor ($rm[Fe/H] = -1.6^{+0.2}_{-0.4}$ dex). The outer stellar component at $Rgtrapprox8$ kpc is, therefore, well separated from the inner disk in terms of the stellar density and stellar populations. While our results cast doubt on the currently established wisdom that NGC,300 is a pure exponential disk galaxy, a more detailed survey should be carried out to identify the outskirts as either a disk or a stellar halo.
We present the discovery of a rapidly evolving transient by the Korean Microlensing Telescope Network Supernova Program (KSP). KSP is a novel high-cadence supernova survey that offers deep ($sim21.5$ mag in $BVI$ bands) nearly continuous wide-field monitoring for the discovery of early and/or fast optical transients. KSP-OT-201509a, reported here, was discovered on 2015 September 27 during the KSP commissioning run in the direction of the nearby galaxy NGC~300, and stayed above detection limit for $sim$ 22 days. We use our $BVI$ light-curves to constrain the ascent rate, $-3.7(7)$ mag day$^{-1}$ in $V$, decay time scale, $t^{V}_{2}=1.7(6)$ days, and peak absolute magnitude, $-9.65leq M_{V}leq -9.25$ mag. We also find evidence for a short-lived pre-maximum halt in all bands. The peak luminosity and lightcurve evolution make KSP-OT-201509a consistent with a bright, rapidly decaying nova outburst. We discuss constraints on the nature of the progenitor and its environment using archival HST/ACS images and conclude with a broad discussion on the nature of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا