No Arabic abstract
We present multi-wavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of one month, and recorded multiple transit events with depths varying between ~20 to 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5 to 1.2 microns. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2 sigma lower limit of 0.8 microns on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10 +5/-3 microns.
More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.
We have obtained extensive photometric observations of the polluted white dwarf WD 1145+017 which has been reported to be transited by at least one, and perhaps several, large asteroids (or, planetesimals) with dust emission. We have carried out 53 observation sessions on 37 nights, totaling 192 hours, of this 17th magnitude star with small to modest size telescopes covering the interval 2015 November 1 to 2016 January 21. In all, we have detected some 237 significant dips in flux. Periodograms of the data reveal a significant periodicity of 4.5004 hours that is consistent with the dominant (A) period detected with K2. The folded light curve at this period shows there is an hour-long depression in flux with a mean depth of nearly 10%. This depression is comprised of a series of shorter and sometimes deeper dips that do not always occur at exactly the same orbital phase, and which would be unresolvable with K2. In fact, we find numerous dips in flux at other orbital phases. Nearly all of the dips associated with this activity appear to drift systematically in phase with respect to the A period by about 2.5 minutes per day with a dispersion of ~0.5 min/d, corresponding to a mean drift period of 4.4928 hours. In all, we can track approximately 15 of these drifting features. There is no detection of the B-F periods found with K2, but if they remain at the K2 levels we would not expect to have seen them. We explain the drifting motion as that of smaller bodies (`fragments) that break off from the asteroid and go into a slightly smaller orbit than that of the asteroid. If our interpretation is correct, we can use the drift rate to determine the mass of the asteroid. Under that scenario, we find that the mass of the asteroid is M_a ~ = 10^23 grams, or about 1/10th the mass of Ceres, with an uncertainty of about a factor of 2.
White dwarf WD 1145+017 is orbited by several clouds of dust, possibly emanating from actively disintegrating bodies. These dust clouds reveal themselves through deep, broad, and evolving transits in the stars light curve. Here, we report two epochs of multi-wavelength photometric observations of WD 1145+017, including several filters in the optical, K$_mathrm{s}$ and 4.5 $mu$m bands in 2016 and 2017. The observed transit depths are different at these wavelengths. However, after correcting for excess dust emission at K$_mathrm{s}$ and 4.5 $mu$m, we find the transit depths for the white dwarf itself are the same at all wavelengths, at least to within the observational uncertainties of $sim$5%-10%. From this surprising result, and under the assumption of low optical depth dust clouds, we conclude that there is a deficit of small particles (with radii $s lesssim$ 1.5 $mu$m) in the transiting material. We propose a model wherein only large particles can survive the high equilibrium temperature environment corresponding to 4.5 hr orbital periods around WD 1145+017, while small particles sublimate rapidly. In addition, we evaluate dust models that are permitted by our measurements of infrared emission.
WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disintegrating asteroid. Here, we present results from a large photometric and spectroscopic campaign with Hubble, Keck , VLT, Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat surprisingly, but consistent with previous observations in the u band, the UV transit depths are always shallower than those in the optical. We develop a model that can quantitatively explain the observed bluing and the main findings are: I. the transiting objects, circumstellar gas, and white dwarf are all aligned along our line of sight; II. the transiting object is blocking a larger fraction of the circumstellar gas than of the white dwarf itself. Because most circumstellar lines are concentrated in the UV, the UV flux appears to be less blocked compared to the optical during a transit, leading to a shallower UV transit. This scenario is further supported by the strong anti-correlation between optical transit depth and circumstellar line strength. We have yet to detect any wavelength-dependent transits caused by the transiting material around WD 1145+017.
WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the system, obtained with the Gran Telescopio Canarias (GTC) and the Liverpool Telescope (LT), respectively. The observations spanned $5.5$ h, somewhat longer than the $4.5$-h orbital period of the debris. Dividing the GTC spectrophotometry into five wavelength bands reveals no significant colour differences, confirming grey transits in the optical. We argue that absorption by an optically thick structure is a plausible alternative explanation for the achromatic nature of the transits that can allow the presence of small-sized ($simmu$m) particles. The longest ($87$ min) and deepest ($50$ per cent attenuation) transit recorded in our data exhibits a complex structure around minimum light that can be well modelled by multiple overlapping dust clouds. The strongest circumstellar absorption line, Fe II $lambda$5169, significantly weakens during this transit, with its equivalent width reducing from a mean out-of-transit value of $2$ AA to $1$ AA in-transit, supporting spatial correlation between the circumstellar gas and dust. Finally, we made use of the Gaia Data Release 2 and archival photometry to determine the white dwarf parameters. Adopting a helium-dominated atmosphere containing traces of hydrogen and metals, and a reddening $E(B-V)=0.01$ we find $T_mathrm{eff}=15,020 pm 520$ K, $log g=8.07pm0.07$, corresponding to $M_mathrm{WD}=0.63pm0.05 mbox{$mathrm{M}_{odot}$}$ and a cooling age of $224pm30$ Myr.