No Arabic abstract
Inelastic losses in core level x-ray spectra arise from many-body excitations, leading to broadening and damping as well as satellite peaks in x-ray photoemission (XPS) and x-ray absorption (XAS) spectra. Here we present a practical approach for calculating these losses based on a cumulant representation of the particle-hole Greens function, a quasi-boson approximation, and a partition of the cumulant into extrinsic, intrinsic and interference terms. The intrinsic losses are calculated using real-time, time-dependent density functional theory while the extrinsic losses are obtained from the GW approximation of the photo-electron self-energy and the interference terms are approximated. These effects are included in the spectra using a convolution with an energy dependent particle-hole spectral function. The approach elucidates the nature of the spectral functions in XPS and XAS and explains the significant cancellation between extrinsic and intrinsic losses. Edge-singularity effects in metals are also accounted for. Illustrative results are presented for the XPS and XAS for both weakly and more correlated systems.
Inelastic losses are crucial to a quantitative analysis of x-ray absorption spectra. However, current treatments are semi-phenomenological in nature. Here a first-principles, many-pole generalization of the plasmon-pole model is developed for improved calculations of inelastic losses. The method is based on the GW approximation for the self-energy and real space multiple scattering calculations of the dielectric function for a given system. The model retains the efficiency of the plasmon-pole model and is applicable both to periodic and aperiodic materials over a wide energy range. The same many-pole model is applied to extended GW calculations of the quasiparticle spectral function. This yields estimates of multi-electron excitation effects, e.g., the many-body amplitude factor $S_0^2$ due to intrinsic losses. Illustrative calculations are compared with other GW calculations of the self-energy, the inelastic mean free path, and experimental x-ray absorption spectra.
X-ray photoemission spectra generally exhibit satellite features in addition to the quasi-particle peaks due to many-body excitations, which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge-transfer (CT) excitations in correlated materials have proved difficult to calculate from first principles. Here we report a real-time, real-space approach for such calculations based on a cumulant representation of the core-hole Greens function and time-dependent density functional theory. This approach also yields an interpretation of CT satellites in terms of a complex oscillatory, transient response to a suddenly created core hole. Illustrative results for TiO$_2$ and NiO are in good agreement with experiment.
We present an equation of motion coupled cluster approach for calculating and understanding intrinsic inelastic losses in core level x-ray absorption spectra (XAS). The method is based on a factorization of the transition amplitude in the time-domain, which leads to a convolution of an effective one-body spectrum and the core-hole spectral function. The spectral function characterizes these losses in terms of shake-up excitations and satellites, and is calculated using a cumulant representation of the core-hole Greens function that includes non-linear corrections. The one-body spectrum also includes orthogonality corrections that enhance the XAS at the edge.
There has been considerable interest in properties of condensed matter at finite temperature, including non-equilibrium behavior and extreme conditions up to the warm dense matter regime. Such behavior is encountered, e.g., in experimental time resolved x-ray absorption spectroscopy (XAS) in the presence of intense laser fields. In an effort to simulate such behavior, we present an approach for calculations of finite-temperature x-ray absorption spectra in arbitrary materials, using a generalization of the real-space Greens function formalism. The method is incorporated as an option in the core-level x-ray spectroscopy code FEFF10. To illustrate the approach, we present calculations for several materials together with comparisons to experiment and with other methods.
The ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ is of interest both as a quasi-one-dimensional analog of the superconducting cuprates and as a superconductor in its own right when Sr is substituted by Ca. In order to model resonant inelastic x-ray scattering (RIXS) spectra for this compound, we investigate the simpler SrCu$_{2}$O$_{3}$ system in which the crystal structure contains very similar ladder planes. We approximate the LDA dispersion of SrCu$_{2}$O$_{3}$ by a Cu only two-band tight-binding model. Strong correlation effects are incorporated by assuming an anti-ferromagnetic ground state. The available angle-resolved photoemission (ARPES) and RIXS data on the ladder compound are found to be in reasonable accord with our theoretical predictions.