Do you want to publish a course? Click here

On Induced Colourful Paths in Triangle-free Graphs

151   0   0.0 ( 0 )
 Added by Mathew Francis
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph contains a colourful path on $chi(G)$ vertices. We explore a conjecture that states that every properly coloured triangle-free graph $G$ contains an induced colourful path on $chi(G)$ vertices and prove its correctness when the girth of $G$ is at least $chi(G)$. Recent work on this conjecture by Gyarfas and Sarkozy, and Scott and Seymour has shown the existence of a function $f$ such that if $chi(G)geq f(k)$, then an induced colourful path on $k$ vertices is guaranteed to exist in any properly coloured triangle-free graph $G$.



rate research

Read More

For all $nge 9$, we show that the only triangle-free graphs on $n$ vertices maximizing the number $5$-cycles are balanced blow-ups of a 5-cycle. This completely resolves a conjecture by ErdH{o}s, and extends results by Grzesik and Hatami, Hladky, Kr{a}l, Norin and Razborov, where they independently showed this same result for large $n$ and for all $n$ divisible by $5$.
An orientation of a graph is semi-transitive if it is acyclic, and for any directed path $v_0rightarrow v_1rightarrow cdotsrightarrow v_k$ either there is no arc between $v_0$ and $v_k$, or $v_irightarrow v_j$ is an arc for all $0leq i<jleq k$. An undirected graph is semi-transitive if it admits a semi-transitive orientation. Semi-transitive graphs generalize several important classes of graphs and they are precisely the class of word-representable graphs studied extensively in the literature. Determining if a triangle-free graph is semi-transitive is an NP-hard problem. The existence of non-semi-transitive triangle-free graphs was established via ErdH{o}s theorem by Halld{o}rsson and the authors in 2011. However, no explicit examples of such graphs were known until recent work of the first author and Saito who have shown computationally that a certain subgraph on 16 vertices of the triangle-free Kneser graph $K(8,3)$ is not semi-transitive, and have raised the question on the existence of smaller triangle-free non-semi-transitive graphs. In this paper we prove that the smallest triangle-free 4-chromatic graph on 11 vertices (the Grotzsch graph) and the smallest triangle-free 4-chromatic 4-regular graph on 12 vertices (the Chvatal graph) are not semi-transitive. Hence, the Grotzsch graph is the smallest triangle-free non-semi-transitive graph. We also prove the existence of semi-transitive graphs of girth 4 with chromatic number 4 including a small one (the circulant graph $C(13;1,5)$ on 13 vertices) and dense ones (Tofts graphs). Finally, we show that each $4$-regular circulant graph (possibly containing triangles) is semi-transitive.
91 - Stefan Glock 2021
We show that for $dge d_0(epsilon)$, with high probability, the random graph $G(n,d/n)$ contains an induced path of length $(3/2-epsilon)frac{n}{d}log d$. This improves a result obtained independently by Luczak and Suen in the early 90s, and answers a question of Fernandez de la Vega. Along the way, we generalize a recent result of Cooley, Draganic, Kang and Sudakov who studied the analogous problem for induced matchings.
We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on $n$ vertices with maximum degree $d$, showing that an independent set drawn uniformly at random from such a graph has expected size at least $(1+o_d(1)) frac{log d}{d}n$. This gives an alternative proof of Shearers upper bound on the Ramsey number $R(3,k)$. We then prove that the total number of independent sets in a triangle-free graph with maximum degree $d$ is at least $exp left[left(frac{1}{2}+o_d(1) right) frac{log^2 d}{d}n right]$. The constant $1/2$ in the exponent is best possible. In both cases, tightness is exhibited by a random $d$-regular graph. Both results come from considering the hard-core model from statistical physics: a random independent set $I$ drawn from a graph with probability proportional to $lambda^{|I|}$, for a fugacity parameter $lambda>0$. We prove a general lower bound on the occupancy fraction (normalized expected size of the random independent set) of the hard-core model on triangle-free graphs of maximum degree $d$. The bound is asymptotically tight in $d$ for all $lambda =O_d(1)$. We conclude by stating several conjectures on the relationship between the average and maximum size of an independent set in a triangle-free graph and give some consequences of these conjectures in Ramsey theory.
Given a class $mathcal{C}$ of graphs and a fixed graph $H$, the online Ramsey game for $H$ on $mathcal C$ is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in $mathcal C$, and Painter colors the new edge either red or blue. Builder wins the game if Painter is forced to make a monochromatic copy of $H$ at some point in the game. Otherwise, Painter can avoid creating a monochromatic copy of $H$ forever, and we say Painter wins the game. We initiate the study of characterizing the graphs $F$ such that for a given graph $H$, Painter wins the online Ramsey game for $H$ on $F$-free graphs. We characterize all graphs $F$ such that Painter wins the online Ramsey game for $C_3$ on the class of $F$-free graphs, except when $F$ is one particular graph. We also show that Painter wins the online Ramsey game for $C_3$ on the class of $K_4$-minor-free graphs, extending a result by Grytczuk, Ha{l}uszczak, and Kierstead.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا