No Arabic abstract
We investigate the UV continuum slope $alpha$ of a large quasar sample from SDSS DR7. By using specific continuum windows, we build two samples at lower ($0.71<z<1.19$) and higher ($1.90<z<3.15$) redshifts, which correspond to the continuum slopes at longer (NUV) and shorter (FUV) rest wavelength ranges respectively. Overall, the average continuum slopes are $-0.36$ and $-0.51$ for $alpha_{rm NUV}$ and $alpha_{rm FUV}$ with similar dispersions $sigma_{alpha} sim 0.5$. For both samples, we confirm the luminosity dependence of the continuum slope, i.e., fainter quasars have redder spectra. We further find that both $alpha_{rm NUV}$ and $alpha_{rm FUV}$ have a common upper limit ($sim 1/3$) which is almost independent of the quasar luminosity $L_{rm bol}$. This finding implies that the intrinsic quasar continuum (or the bluest quasar), at any luminosity, obey the standard thin disk model. We propose that the other quasars with redder $alpha$ are caused by the reddening from the dust {it locally}. With this assumption, we employ the dust extinction scenario to model the observed $L_{rm bol}-alpha$ relation. We find that, a typical value of $E(B-V)sim0.1$ to $0.3$ mag (depending on the types of extinction curve) of the quasar {it local} dust is enough to explain the discrepancy of $alpha$ between the observation ($sim-0.5$) and the standard accretion disk model prediction ($sim 1/3$).
We present a new redshift survey, the 2dF Quasar Dark Energy Survey pilot (2QDESp), which consists of ${approx}10000$ quasars from ${approx}150$ deg$^2$ of the southern sky, based on VST-ATLAS imaging and 2dF/AAOmega spectroscopy. Combining our optical photometry with the WISE (W1,W2) bands we can select essentially contamination free quasar samples with $0.8{<}z{<}2.5$ and $g{<}20.5$. At fainter magnitudes, optical UVX selection is still required to reach our $g{approx}22.5$ limit. Using both these techniques we observed quasar redshifts at sky densities up to $90$ deg$^{-2}$. By comparing 2QDESp with other surveys (SDSS, 2QZ and 2SLAQ) we find that quasar clustering is approximately luminosity independent, with results for all four surveys consistent with a correlation scale of $r_{0}{=}6.1{pm}0.1 : h^{-1}$Mpc, despite their decade range in luminosity. We find a significant redshift dependence of clustering, particularly when BOSS data with $r_{0}{=}7.3{pm}0.1 : h^{-1}$Mpc are included at $z{approx}2.4$. All quasars remain consistent with having a single host halo mass of ${approx}2{pm}1{times}10^{12} : h^{-1}M_odot$. This result implies that either quasars do not radiate at a fixed fraction of the Eddington luminosity or AGN black hole and dark matter halo masses are weakly correlated. No significant evidence is found to support fainter, X-ray selected quasars at low redshift having larger halo masses as predicted by the `hot halo mode AGN model of Fanidakis et al. 2013. Finally, although the combined quasar sample reaches an effective volume as large as that of the original SDSS LRG sample, we do not detect the BAO feature in these data.
We determine the slope of the near infrared extinction power law (A$_{lambda} propto lambda^{-alpha}$) for 8 regions of the Galaxy between l$sim27^{circ}$ and $sim100^{circ}$. UKIDSS Galactic Plane Survey data are compared, in colour-colour space, with Galactic population synthesis model data reddened using a series of power laws and convolved through the UKIDSS filter profiles. Monte Carlo simulations allow us to determine the best fit value of $alpha$ and evaluate the uncertainty. All values are consistent with each other giving an average extinction power law of $alpha$=2.14$^{+0.04}_{-0.05}$. This is much steeper than most laws previously derived in the literature from colour excess ratios, which are typically between 1.6 and 1.8. We show that this discrepancy is due to an inappropriate choice of filter wavelength in conversion from colour excess ratios to $alpha$ and that effective rather than isophotal wavelengths are more appropriate. In addition, curved reddening tracks, which depend on spectral type and filter system, should be used instead of straight vectors.
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
Determinations of the UV luminosity function of AGN at high redshifts are important for constraining the AGN contribution to reionization and understanding the growth of supermassive black holes. Recent inferences of the luminosity function suffer from inconsistencies arising from inhomogeneous selection and analysis of AGN data. We address this problem by constructing a sample of more than 80,000 colour-selected AGN from redshift z=0 to 7.5. While this sample is composed of multiple data sets with spectroscopic redshifts and completeness estimates, we homogenise these data sets to identical cosmologies, intrinsic AGN spectra, and magnitude systems. Using this sample, we derive the AGN UV luminosity function from redshift z=0 to 7.5. The luminosity function has a double power law form at all redshifts. The break magnitude $M_*$ of the AGN luminosity function shows a steep brightening from $M_*sim -24$ at z=0.7 to $M_*sim -29$ at z=6. The faint-end slope $beta$ significantly steepens from $-1.7$ at $z<2.2$ to $-2.4$ at $zsimeq 6$. In spite of this steepening, the contribution of AGN to the hydrogen photoionization rate at $zsim 6$ is subdominant (< 3%), although it can be non-negligible (~10%) if these luminosity functions hold down to $M_{1450}=-18$. Under reasonable assumptions, AGN can reionize HeII by redshift z=2.9. At low redshifts (z<0.5), AGN can produce about half of the hydrogen photoionization rate inferred from the statistics of HI absorption lines in the IGM. Our global analysis of the luminosity function also reveals important systematic errors in the data, particularly at z=2.2--3.5, which need to be addressed and incorporated in the AGN selection function in future in order to improve our results. We make various fitting functions, luminosity function analysis codes, and homogenised AGN data publicly available.