Natural SU(2)-structures on tangent sphere bundles


Abstract in English

We define and study natural $mathrm{SU}(2)$-structures, in the sense of Conti-Salamon, on the total space $cal S$ of the tangent sphere bundle of any given oriented Riemannian 3-manifold $M$. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on $S^3times S^2$, of which the well-known Sasaki-Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all $mathrm{SU}(2)$-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti-Salamon are considered; leading to a new integrable $mathrm{SU}(3)$-structure on ${cal S}timesmathbb{R}_+$ associated to any flat $M$.

Download