No Arabic abstract
The effect of Lorentz symmetry violation in the phenomenon of photon gravitational bending, is investigated. Using a semiclassical approach, where the photon is described by the Carrol-Field-Jackiw (CFJ) electrodynamics which is responsible for implementing the Lorentz symmetry violation, the gravitational deflection angle related to the CFJ photon is computed. As expected, this bending angle experiences a deviation from the usual Einstein result and the latter is recovered in the appropriate limit. A comparison between the theoretical prediction and the experimental results allows to conclude that no trace of Lorentz symmetry breaking is found provided the components of the background vector field are $lesssim 10^{-8}$ eV.
We study an extension of QED involving a light pseudoscalar (an axion-like particle), together with a very massive fermion which has Lorentz-violating interactions with the photon and the pseudoscalar, including a nonminimal Lorentz-violating coupling. We investigate the low energy effective action for this model, after integration over the fermion field, and show that interesting results are obtained, such as the generation of a correction to the standard coupling between the axion-like particle and the photon, as well as Lorentz-violating effects in the interaction energy involving electromagnetic sources such as pointlike charges, steady line currents and Dirac strings.
We compute the full vacuum polarization tensor in the minimal QED extension. We find that its low-energy limit is dominated by the radiatively induced Chern-Simons-like term and the high-energy limit is dominated by the c-type coefficients. We investigate the implications of the high-energy limit for the QED and QCD running couplings. In particular, the QCD running offers the possibility to study Lorentz-violating effects on the parton distribution functions and observables such as the hadronic R ratio.
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, whereas the second one does. A r{e}sum{e} will be given of the decay rates for these processes and their properties.
Lorentz-violating neutrino parameters have been severely constrained on the basis of astrophysical considerations. In the high-energy limit, one generally assumes a superluminal dispersion relation of an incoming neutrino of the form E ~ |p|v, where E is the energy, p is the momentum and $v = sqrt(1 + delta) > 1. Lepton-pair creation due to a Cerenkov-radiation-like process (nu -> nu + e^- + e^+) becomes possible above a certain energy threshold, and bounds on the Lorentz-violating parameter delta can be derived. Here, we investigate a related process, nu_i -> nu_i + nu_f + bar_nu_f, where nu_i is an incoming neutrino mass eigenstate, while nu_f is the final neutrino mass eigenstate, with a superluminal velocity that is slightly slower than that of the initial state. This process is kinematically allowed if the Lorentz-violating parameters at high energy differ for the different neutrino mass eigenstates. Neutrino splitting is not subject to any significant energy threshold condition and could yield quite a substantial contribution to decay and energy loss processes at high energy, even if the differential Lorentz violation among neutrino flavors is severely constrained by other experiments. We also discuss the SU(2)-gauge invariance of the superluminal models and briefly discuss the use of a generalized vierbein formalism in the formulation of the Lorentz-violating Dirac equation.
In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we show that form factors, in the range of momentum transfer relevant for local galactic dark matter, are smaller than their value at zero momentum transfer, which is usually considered.