Do you want to publish a course? Click here

Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

68   0   0.0 ( 0 )
 Added by Sibylle Anderl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Snow lines, marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. Aims. We aim at using the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. Methods. As part of the CALYPSO IRAM Large Program, we have obtained observations of C$^{18}$O, N$_2$H$^+$ and CH$_3$OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources we have modeled the emission using a chemical code coupled with a radiative transfer module. Results. We observe an anti-correlation of C$^{18}$O and N$_2$H$^+$ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N$_2$H$^+$ forming a ring around the centrally peaked C$^{18}$O emission due to N$_2$H$^+$ being chemically destroyed by CO. The emission regions of models and observations match for a CO binding energy of 1200 K, which is higher than the binding energy of pure CO ices ($sim$855 K). Furthermore, we find very low CO abundances inside the snow lines in our sources, about an order of magnitude lower than the total CO abundance observed in the gas on large scales in molecular clouds before depletion sets in. Conclusions. The high CO binding energy may hint at CO being frozen out in a polar ice environment like amorphous water ice or in non-polar CO$_2$-rich ice. The low CO abundances are comparable to values found in protoplanetary disks, which may indicate an evolutionary scenario where these low values are already established in the protostellar phase. (Abbr. Version)



rate research

Read More

84 - S. Anderl , S. Maret , S. Cabrit 2020
Context. The process of mass accretion in the earliest phases of star formation is still not fully understood: Does the accretion rate smoothly decline with the age of the protostar or are there short, intermittent accretion bursts? Aims. We aim to explore whether or not the observed C$^{18}$O and N$_2$H$^+$ emission pattern towards the VeLLO IRAM 04191+1522 can be understood in the framework of a scenario where the emission is chemically tracing a past accretion burst. Methods.We used high-angular-resolution Plateau de Bure Interferometer (PdBI) observations of C$^{18}$O and N$_2$H$^+$ towards IRAM 04191+1522 that were obtained as part of the CALYPSO IRAM Large Program. We model these observations using a chemical code with a time-dependent physical structure coupled with a radiative transfer module, where we allow for variations in the source luminosity. Results. We find that the N$_2$H$^+$ line emission shows a central hole, while the C$^{18}$O emission is compact. The morphology of these two lines cannot be reproduced with a constant luminosity model based on the present-day internal luminosity (0.08 L$_{sun}$). However, the N$_2$H$^+$ peaks are consistent with a constant-luminosity model of 12 L$_{sun}$. Using a model with time-dependent temperature and density profiles, we show that the observed N$_2$H$^+$ peak emission could indeed be caused by a past accretion burst. Such a burst should have occurred a couple of hundred years ago. Conclusions. We suggest that an accretion burst occurred in IRAM 04191+1522 in the recent past. If such bursts are common and sufficiently long in VeLLOs, they could lead to higher accretion onto the central object than their luminosity suggests. For IRAM 04191 in particular, our results yield an estimated final mass of 0.2 - 0.25 M$_{sun}$ by the end of the Class 0 phase, which would make this object a low-mass star rather than a brown dwarf.
77 - L. Podio , B. Tabone , C. Codella 2020
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdBI observations in CO (2-1), SO ($5_6-4_5$), and SiO (5-4). CO (2-1), which probes outflowing gas, is detected in all the sources (for the first time in SerpS-MM22 and SerpS-MM18b). Collimated high-velocity jets in SiO (5-4) are detected in 67% of the sources (for the first time in IRAS4B2, IRAS4B1, L1448-NB, SerpS-MM18a), and 77% of these also show jet/outflow emission in SO ($5_6-4_5$). In 5 sources (24% of the sample) SO ($5_6-4_5$) probes the inner envelope and/or the disk. The CALYPSO survey shows that the outflow phenomenon is ubiquitous and that the detection rate of high-velocity jets increases with protostellar accretion, with at least 80% of the sources with Lint>1 Lsun driving a jet. The protostellar flows exhibit an onion-like structure, where the SiO jet (opening angle ~10$^o$) is nested into a wider angle SO (~15$^o$) and CO (~25$^o$) outflow. On scales >300 au the SiO jets are less collimated than atomic jets from Class II sources (~3$^o$). Velocity asymmetry between the two jet lobes are detected in one third of the sources, similarly to Class II atomic jets, suggesting that the same launching mechanism is at work. Most of the jets are SiO rich (SiO/H2 from >2.4e-7 to >5e-6), which indicates efficient release of >1%-10% of silicon in gas phase likely in dust-free winds, launched from inside the dust sublimation radius. The mass-loss rates (from ~7e-8 to ~3e-6 Msun/yr) are larger than what was measured for Class II jets. Similarly to Class II sources, the mass-loss rates are ~1%-50% of the mass accretion rates suggesting that the correlation between ejection and accretion in young stars holds from 1e4 yr up to a few Myr.
Understanding the formation mechanisms of protoplanetary disks and multiple systems, and their pristine properties, is a key question for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. In the framework of the IRAM-PdBI CALYPSO survey, we have obtained sub-arcsecond observations of the dust continuum emission at 231 GHz and 94 GHz, for a sample of 16 solar-type Class 0 protostars. In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we model the dust continuum emission visibility profiles using both Plummer-like envelope models and envelope models including additional Gaussian disk-like components. Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii > 60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (> 72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii < 60 au. Our multiplicity fraction at scales 100-5000 au is in global agreement with the multiplicity properties of Class I protostars at similar scales. We confront our observational constraints on the disk size distribution in Class 0 protostars to the typical disk properties from protostellar formation models. Because they reduce the centrifugal radius, and produce a disk size distribution peaking at radii <100 au during the main accretion phase, magnetized models of rotating protostellar collapse are favored by our observations.
We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class~0 protostar NGC1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner parts of the protostellar envelope. In the framework of the CALYPSO (Continuum And Lines in Young ProtoStellar Objects) IRAM Plateau de Bure survey, we obtained large bandwidth spectra at sub-arcsecond resolution towards NGC 1333-IRAS2A. We identify the emission lines towards the central protostar and perform Gaussian fits to constrain the size of the emitting region for each of these lines, tracing various physical conditions and scales. The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our observations. This allows us to measure, for the first time, the size of the COM emission inside the protostellar envelope, finding that it originates from a region of radius 40-100 AU, centered on the NGC 1333-IRAS2A protostellar object. Our analysis shows no preferential elongation of the COM emission along the jet axis, and therefore does not support the hypothesis that COM emission arises from shocked envelope material at the base of the jet. Down to similar sizes, the dust continuum emission is well reproduced with a single envelope model, and therefore does not favor the hypothesis that COM emission arises from the thermal sublimation of grains embedded in a circumstellar disk. Finally, the typical scale $sim$60 AU observed for COM emission is consistent with the size of the inner envelope where $T_{rm{dust}} > 100$ K is expected. Our data therefore strongly suggest that the COM emission traces the hot corino in IRAS2A, i.e., the warm inner envelope material where the icy mantles of dust grains evaporate because they are passively heated by the central protostellar object.
236 - C. Codella , A.J. Maury , F. Gueth 2014
Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8) resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22 of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا