No Arabic abstract
Galactic Globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing toward more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger program targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter we report an extreme paucity of AGB stars with [Na/O] > -0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4s horizontal branch morphology -- it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilising the HERMES spectrograph.
We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the VLT FLAMES+GIRAFFE spectrograph at VLT. These medium resolution spectra cover by a small wavelength range, and often have very low signal-to-noise ratios. We attacked this dataset by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 Red Giant Branch stars with $V leq 14.7$ we obtain a nearly constant metallicity, $<[{rm Fe}/{rm H}]> = -1.07$ ($sigma$ = 0.02). No difference in the metallicity at the level of $0.01 ~textrm{dex}$ is observed between the two RGB sequences identified by cite{Monelli:2013us}. For 1869 Subgiant and Main Sequence Stars $V > 14.7$ we obtain $<[{rm Fe}/{rm H}]> = -1.16$ ($sigma$ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than two thousand stars, using a dataset that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.
We report the discovery of a luminous yellow post-asymptotic-giant-branch (PAGB) star in the globular cluster (GC) M19 (NGC 6273), identified during our uBVI survey of Galactic GCs. The uBVI photometric system is optimized to detect stars with large Balmer discontinuities, indicating very low surface gravities and high luminosities. The spectral-energy distribution (SED) of the star is consistent with an effective temperature of about 6250 K and a surface gravity of $log g=0.5$. We use Gaia data to show that the stars proper motion and radial velocity are consistent with cluster membership. One aim of our program is to test yellow PAGB stars as candidate Population II standard candles for determining extragalactic distances. We derive a visual absolute magnitude of $M_V=-3.39pm0.09$ for the M19 star. This is in close agreement with the $M_V$ values found for yellow PAGB stars in the GCs omega Cen, NGC 5986, and M79, indicating a very narrow luminosity function. These objects are four magnitudes brighter than RR Lyrae variables, and they can largely avoid the issues of interstellar extinction that are a problem for Population I distance indicators. We also identified a second luminous PAGB object in M19, this one a hotter UV-bright star. Its SED is consistent with an effective temperature of about 11,750 K and $log g=2.0$. The two objects have nearly identical bolometric luminosities, $log L/L_odot=3.24$ and 3.22, respectively.
ALMA observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ~1.2-3.5 x 10^-7 solar masses per year. We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
By means of grid-based, 3D hydrodynamical simulations we study the formation of second generation (SG) stars in a young globular cluster (GC) of mass 10^7 Msun, the possible progenitor of an old GC with a present mass ~(1-5) * 10^6 Msun. The cluster accretes external gas as its first generation (FG) asymptotic giant branch (AGB) stars release their ejecta and SG stars form. We consider two models characterised by different densities of the external gas. In both cases, we find that a very compact SG subsystem with central density >10^5M sun/pc^3 forms in the innermost regions of the cluster. The low-density model forms a population of extreme SG stars with high helium enhancement, followed by the formation of another SG group out of a mix of pristine gas and AGB ejecta and characterised by a modest helium enhancement. On the other hand, the high-density model forms in prevalence SG stars with modest helium enhancement. Our simulations illustrate the dynamical processes governing the formation of SG populations in GCs and shed light on the structural properties emerging at the end of this phase. The newly born SG groups have different concentrations, with more extreme SG stars more centrally concentrated than those with less extreme chemical abundances. The very high density of the SG subsystems implies that SG massive stars, if formed, might suffer frequent close encounters, collisions and gas stripping, thus possibly contributing further gas to the SG formation.
We present an analysis of the second epoch HST WFC3 F110W near-Infrared (NIR) imaging data of the globular cluster M4. The new dataset suggests that one of the previously suggested four brown dwarf candidates in this cluster is indeed a high-probability cluster member. The position of this object in the NIR colour magnitude diagrams (CMDs) is in the white dwarf/brown dwarf area. The source is too faint to be a low-mass main sequence star, but, according to theoretical considerations, also most likely somewhat too bright to be a bona-fide brown dwarf. Since we know that the source is a cluster member, we determined a new optical magnitude estimate at the position the source should have in the optical image. This new estimate places the source closer to the white dwarf sequence in the optical-NIR CMD and suggests that it might be a very cool (T_eff < 4500 K) white dwarf at the bottom of the white dwarf cooling sequence in M4, or a white dwarf/brown dwarf binary. We cannot entirely exclude the possibility that the source is a very massive, bright brown dwarf, or a very low-mass main sequence star, however, we conclude that we still have not convincingly detected a brown dwarf in a globular cluster, but we expect to be very close to the start of the brown dwarf cooling sequence in this cluster. We also note that the main sequence ends at F110W approx.22.5 mag in the proper-motion cleaned CMDs, where completeness is still high.