Do you want to publish a course? Click here

Efficient Local Search in Coordination Games on Graphs

118   0   0.0 ( 0 )
 Added by Dominik Wojtczak
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. Prior work shows that the problem of determining the existence of a pure Nash equilibrium for these games is NP-complete already for graphs with all weights equal to one and no bonuses. However, for several classes of graphs (e.g. DAGs and cliques) pure Nash equilibria or even strong equilibria always exist and can be found by simply following a particular improvement or coalition-improvement path, respectively. In this paper we identify several natural classes of graphs for which a finite improvement or coalition-improvement path of polynomial length always exists, and, as a consequence, a Nash equilibrium or strong equilibrium in them can be found in polynomial time. We also argue that these results are optimal in the sense that in natural generalisations of these classes of graphs, a pure Nash equilibrium may not even exist.



rate research

Read More

We introduce natural strategic games on graphs, which capture the idea of coordination in a local setting. We study the existence of equilibria that are resilient to coalitional deviations of unbounded and bounded size (i.e., strong equilibria and k-equilibria respectively). We show that pure Nash equilibria and 2-equilibria exist, and give an example in which no 3-equilibrium exists. Moreover, we prove that strong equilibria exist for various special cases. We also study the price of anarchy (PoA) and price of stability (PoS) for these solution concepts. We show that the PoS for strong equilibria is 1 in almost all of the special cases for which we have proven strong equilibria to exist. The PoA for pure Nash equilbria turns out to be unbounded, even when we fix the graph on which the coordination game is to be played. For the PoA for k-equilibria, we show that the price of anarchy is between 2(n-1)/(k-1) - 1 and 2(n-1)/(k-1). The latter upper bound is tight for $k=n$ (i.e., strong equilibria). Finally, we consider the problems of computing strong equilibria and of determining whether a joint strategy is a k-equilibrium or strong equilibrium. We prove that, given a coordination game, a joint strategy s, and a number k as input, it is co-NP complete to determine whether s is a k-equilibrium. On the positive side, we give polynomial time algorithms to compute strong equilibria for various special cases.
We study natural strategic games on directed graphs, which capture the idea of coordination in the absence of globally common strategies. We show that these games do not need to have a pure Nash equilibrium and that the problem of determining their existence is NP-complete. The same holds for strong equilibria. We also exhibit some classes of games for which strong equilibria exist and prove that a strong equilibrium can then be found in linear time.
We study strategic games on weighted directed graphs, in which the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy, augmented by a fixed non-negative integer bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. We identify natural classes of graphs for which finite improvement or coalition-improvement paths of polynomial length always exist, and, as a consequence, a (pure) Nash equlibrium or a strong equilibrium can be found in polynomial time. The considered classes of graphs are typical in network topologies: simple cycles correspond to the token ring local area networks, while open chains of simple cycles correspond to multiple independent rings topology from the recommendation G.8032v2 on the Ethernet ring protection switching. For simple cycles these results are optimal in the sense that without the imposed conditions on the weights and bonuses a Nash equilibrium may not even exist. Finally, we prove that the problem of determining the existence of a Nash equilibrium or of a strong equilibrium in these games is NP-complete already for unweighted graphs and with no bonuses assumed. This implies that the same problems for polymatrix games are strongly NP-hard.
240 - Mona Rahn , Guido Schafer 2015
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study $alpha$-approximate $k$-equilibria of these games, i.e., outcomes where no group of at most $k$ players can deviate such that each member increases his payoff by at least a factor $alpha$. We prove that for $alpha ge 2$ these games have the finite coalitional improvement property (and thus $alpha$-approximate $k$-equilibria exist), while for $alpha < 2$ this property does not hold. Further, we derive an almost tight bound of $2alpha(n-1)/(k-1)$ on the price of anarchy, where $n$ is the number of players; in particular, it scales from unbounded for pure Nash equilibria ($k = 1)$ to $2alpha$ for strong equilibria ($k = n$). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of $k$ players the price of anarchy can be reduced to $n/k$ (and this bound is tight).
This paper considers a non-cooperative game in which competing users sharing a frequency-selective interference channel selfishly optimize their power allocation in order to improve their achievable rates. Previously, it was shown that a user having the knowledge of its opponents channel state information can make foresighted decisions and substantially improve its performance compared with the case in which it deploys the conventional iterative water-filling algorithm, which does not exploit such knowledge. This paper discusses how a foresighted user can acquire this knowledge by modeling its experienced interference as a function of its own power allocation. To characterize the outcome of the multi-user interaction, the conjectural equilibrium is introduced, and the existence of this equilibrium for the investigated water-filling game is proved. Interestingly, both the Nash equilibrium and the Stackelberg equilibrium are shown to be special cases of the generalization of conjectural equilibrium. We develop practical algorithms to form accurate beliefs and search desirable power allocation strategies. Numerical simulations indicate that a foresighted user without any a priori knowledge of its competitors private information can effectively learn the required information, and induce the entire system to an operating point that improves both its own achievable rate as well as the rates of the other participants in the water-filling game.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا