No Arabic abstract
Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low entropy gas caught in the updraft of rising X-ray bubbles. The low entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy i.e., t_c/t_I < 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the the free-fall time by a significant factor. This mechanism is motivated by ALMA observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ~ 5x 10^8 yr --- the clear-cut signature of thermal instability and the onset of nebular emission and star formation--- may result from the limited ability of radio bubbles to lift low entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of t_c/t_ff < 10 triggers thermal instability, which we find to be inconsistent with observation.
We present an analysis of new and archival ALMA observations of molecular gas in twelve central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in these systems span $10^9-10^{11}mathrm{M}_{odot}$, far more than most gas-rich galaxies. ALMA images reveal a distribution of morphologies from filamentary to disk-dominated structures. Circumnuclear disks on kiloparsec scales appear rare. In most systems, half to nearly all of the molecular gas lies in filamentary structures with masses of a few $times10^{8-10}mathrm{M}_{odot}$ that extend radially several to several tens of kpc. In nearly all cases the molecular gas velocities lie far below stellar velocity dispersions, indicating youth, transience or both. Filament bulk velocities lie far below the galaxys escape and free-fall speeds indicating they are bound and being decelerated. Most extended molecular filaments surround or lie beneath radio bubbles inflated by the central AGN. Smooth velocity gradients found along the filaments are consistent with gas flowing along streamlines surrounding these bubbles. Evidence suggests most of the molecular clouds formed from low entropy X-ray gas that became thermally unstable and cooled when lifted by the buoyant bubbles. Uplifted gas will stall and fall back to the galaxy in a circulating flow. The distribution in morphologies from filament to disk-dominated sources therefore implies slowly evolving molecular structures driven by the episodic activity of the AGN.
Star formation in the universes most massive galaxies proceeds furiously early in time but then nearly ceases. Plenty of hot gas remains available but does not cool and condense into star-forming clouds. Active galactic nuclei (AGN) release enough energy to inhibit cooling of the hot gas, but energetic arguments alone do not explain why quenching of star formation is most effective in high-mass galaxies. In fact, optical observations show that quenching is more closely related to a galaxys central stellar velocity dispersion ($sigma_v$) than to any other characteristic. Here, we show that high $sigma_v$ is critical to quenching because a deep central potential well maximizes the efficacy of AGN feedback. In order to remain quenched, a galaxy must continually sweep out the gas ejected from its aging stars. Supernova heating can accomplish this task as long as the AGN sufficiently reduces the gas pressure of the surrounding circumgalactic medium (CGM). We find that CGM pressure acts as the control knob on a valve that regulates AGN feedback and suggest that feedback power self-adjusts so that it suffices to lift the CGM out of the galaxys potential well. Supernova heating then drives a galactic outflow that remains homogeneous if $sigma_v gtrsim 240 , {rm km , s^{-1}}$. AGN feedback can effectively quench galaxies with a comparable velocity dispersion, but feedback in galaxies with a much lower velocity dispersion tends to result in convective circulation and accumulation of multiphase gas within the galaxy.
We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to the superb field of view and sensitivity of MUSE, we found that the HIG, traced by the coronal line [FeVII] $lambda$6089, extends to scales not seen before, from 700 pc in Circinus and up to ~2 kpc in NGC5728 and NGC3393. The gas morphology is complex, following closely the radio jet and the X-ray emission. Emission line ratios suggest gas excitation by shocks produced by the passage of the radio jet. This scenario is further supported by the physical conditions derived for the HIG, stressing the importance of the mechanical feedback in AGN with low-power radio jets.
We use the optical--infrared imaging in the UKIDSS Ultra Deep Survey field, in combination with the new deep radio map of Arumugam et al., to calculate the distribution of radio luminosities among galaxies as a function of stellar mass in two redshift bins across the interval 0.4<z<1.2. This is done with the use of a new Bayesian method to classify stars and galaxies in surveys with multi-band photometry, and to derive photometric redshifts and stellar masses for those galaxies. We compare the distribution to that observed locally and find agreement if we consider only objects believed to be weak-lined radio-loud galaxies. Since the local distribution is believed to be the result of an energy balance between radiative cooling of the gaseous halo and mechanical AGN heating, we infer that this balance was also present as long ago as z~1. This supports the existence of a direct link between the presence of a low-luminosity (hot-mode) radio-loud active galactic nucleus and the absence of ongoing star formation.
This is the second paper of a series exploring the multi-component (stars, warm and cold gas and radio jets) properties of a sample of eleven nearby low excitation radio galaxies (LERGs), with the aim of better understanding the AGN fuelling/feedback cycle in these objects. Here we present a study of the molecular gas kinematics of six sample galaxies detected in $^{12}$CO(2-1) with ALMA. In all cases, our modelling suggests that the bulk of the gas in the observed (sub-)kpc CO discs is in ordered rotation. Nevertheless, low-level distortions are ubiquitous, indicating that the molecular gas is not fully relaxed into the host galaxy potential. The majority of the discs, however, are only marginally resolved, preventing us from drawing strong conclusions. NGC 3557 and NGC 3100 are special cases. The features observed in the CO velocity curve of NGC 3557 allow us to estimate a super-massive black hole (SMBH) mass of $(7.10pm0.02)times10^{8}$ M$_{odot}$, in agreement with expectations from the M$_{rm SMBH}- sigma_{*}$ relation. The rotation pattern of NGC 3100 shows distortions that appear to be consistent with the presence of both a position angle and inclination warp. Non-negligible radial motions are also found in the plane of the CO disc, likely consistent with streaming motions associated with the spiral pattern found in the inner regions of the disc. The dominant radial motions are likely to be inflows, supporting a scenario in which the cold gas is contributing to the fuelling of the AGN.