Do you want to publish a course? Click here

Ultra-relativistic nuclear collisions: where the spectators flow?

62   0   0.0 ( 0 )
 Added by Sergei A. Voloshin
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In high energy heavy ion collisions, the directed flow of particles is conventionally measured with respect to that of the projectile spectators, which is defined as positive $x$ direction. But it is not known if the spectators deflect in the outward direction or inward -- toward the center line of the collision. In this Letter we discuss how the measurements of the directed flow at mid-rapidity, especially in asymmetric collision such as Cu+Au, can be used to answer this question. We show that the existing data strongly favor the case that the spectators, in the ultrarelativistic collisions, on average deflect outwards.



rate research

Read More

Estimates for elliptic flow in collisions of polarized light nuclei with spin $jge1$ with a heavy nucleus are presented. In such collisions the azimuthal symmetry is broken via polarization of the wave function of the light nucleus, resulting in nonzero one-body elliptic flow coefficient evaluated relative to the polarization axis. Our estimates involve experimentally well known features of light nuclei, such as their quadrupole moment and the charge radius, yielding the one-body elliptic flow coefficient in the range from 1% for collisions with the deuteron to 5% for for collisions with $^{10}$B nucleus. Prospects of addressing the issue in the upcoming fixed-target experiment at the Large Hadron Collider are discussed.
281 - Sergei A. Voloshin 2011
Many features of multiparticle production in ultra-relativistic nuclear collisions reflect the collision geometry and other collision characteristics determining the initial conditions. As the initial conditions affect to a different degree all the particles, it leads to truly multiparticle effects often referred to as anisotropic collective flow. Studying anisotropic flow in nuclear collisions provides unique and invaluable information about the system evolution and the physics of multiparticle production in general. Being not able to cover all aspects of anisotropic flow in one lecture, I decided in the first part of the lecture to discuss briefly a few important and established results, and in the second part, to focus, in a little more detail, on one recent development -- a recent progress in our understanding of the role of fluctuations in the initial conditions. I also discuss some future measurements that might reveal further details of the multiparticle production processes.
We analyze a generic model where wounded quarks are amended with strings in which both end-point positions fluctuate in spatial rapidity. With the assumption that the strings emit particles independently of one another and with a uniform distribution in rapidity, we are able to analyze the model semi-analytically, which allows for its detailed understanding. Using as a constraint the one-body string emission functions obtained from the experimental data for collisions at $sqrt{s_{NN}}=200$ GeV, we explore the two-body correlations for various scenarios of string fluctuations. We find that the popular measures used to quantify the longitudinal fluctuations are limited with upper and lower bounds and assume close values for the most likely models of the end-point distributions, which may explain why various approaches yield here very similar results.
A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow magnitudes, all of which were previously studied with integrated flows. We find that the mode coupling effects among differential flows largely mirror those among the corresponding integrated flows, except at small transverse momenta where mode coupling contributions are small. For the fourth- and fifth-order flow vectors $V_4$ and $V_5$ we argue that the event plane correlations can be understood as the ratio between the mode coupling contributions to these flows and and the flow magnitudes. We also find that for $V_4$ and $V_5$ the linear response contribution scales linearly with the corresponding cumulant-defined eccentricities but not with the standard eccentricities.
While string models describe initial state radiation in ultra-relativistic nuclear collisions well, they mainly differ in their end-point positions of the strings in spatial rapidity. We present a generic model where wounded constituents are amended with strings whose both end-point positions fluctuate and analyze semi-analytically various scenarios of string-end-point fluctuations. In particular we constrain the different cases to experimental data on rapidity spectra from collisions at $sqrt{s_{rm NN}}=200$~GeV, and explore their respective two-body correlations, which allows to partially discriminate the possible solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا